
On the Co-occurrences of Code Smells in
Android Applications

Abstract—Android applications (apps) evolve quickly to meet
users requirements, fix bugs or adapt to technological changes.
Such changes can lead to the presence of code smells − symptoms
of poor design and/or implementation choices that may hinder
the project maintenance and evolution. Most of previous research
focused on studying the characteristics of traditional object-
oriented (OO) code smells affecting source code files in desktop
software systems, and advocated that the interaction and co-
presence of code smells reduce the ability of developers to
understand and maintain source code. However, little knowledge
is available on emerging categories of Android-specific code
smells and their interactions, i.e., co-occurrences, with traditional
OO smells, in the context of Android apps. To provide a broader
understanding of this phenomenon, we conduct an empirical
study on 1,923 open source Android apps taking into account
15 types of Android-specific and 10 types of traditional OO
code smells to explore (i) the extent to which code smells co-
occur together, and (ii) which code smells tend to co-occur
together. Our results show that (i) the co-occurrence phenomenon
is indeed prevalent in Android apps, where 51% of classes are
affected by more than one smell instance (from either OO and
Android smells), while 34% of classes are affected by more than
one Android smell, and 26% are affected by more than one
OO smells, and (ii) there exist 14 smell pairs that have strong
associations. Developers need to be aware of this phenomenon and
consider detecting and eliminating both traditional and Android
smells, using dedicated tools.

Index Terms—Android, code smells, Android smells, Associa-
tion rule mining, empirical study

I. INTRODUCTION

Android apps have to evolve quickly to meet the continuous
user needs, technological changes and stay ahead of the
mobile apps store competition. However, throughout their
evolution, Android apps undergo changes that often lead to
poor implementation and design practices that are manifested
in the form of code smells [1]–[3]. The presence of code smells
often hinders the maintenance and evolution of any software
system [4]–[8]. Like any software system, Android apps can
be affected by traditional Object-Oriented (OO) code smells
[1], [2], but also with new categories of emerging Android-
specific smells, known as Android smells [3], [9]–[12]. The
presence of these smells can lead to resource leaks (e.g., CPU,
memory, battery, etc.) causing, therefore, several performance
and usability problems [11]–[14].

Most of the existing studies focused on traditional OO
smells [7], [15]–[21]. In particular, they focused on various
aspects of OO code smells including code smells prevalence
[11], [22]–[24], co-occurrences [15]–[18], [21], [25] as well
as the effects of code smells on software quality and main-
tainability [21], [26], [27]. It has been also demonstrated that

the co-existence and the interactions between OO code smells
consistently reduce the ability of developers to understand
source code, and thus, it complicates maintenance tasks [7],
[15]–[21]. Furthermore, few studies have recently examined
individual instances of code smells in Android apps [4], [11],
[12], [14], [24].

Although several important research steps have been made
and despite the ever-increasing number of empirical studies
aimed at understanding traditional OO code smells, little
knowledge is available about the phenomenon of code smell
co-occurrences in Android apps. While knowledge about such
individual smell types is established in recent years [3],
[4], [10], [11], important relationships are missing between
traditional OO smells and Android smells.

This knowledge is particularly important for developers
researchers and tool creators. For Android developers, discov-
ering such relationships will help them focusing their attention
by getting a high priority in refactoring the smells that fre-
quently co-occur together which may lead to better monitoring
the quality of their apps. Moreover, it can help them to save
time and effort when refactoring their code and increase their
awareness and understanding of their apps. As for researchers,
it can be a starting point for a deep investigation of the
relation between Android smells and traditional code smells.
Also, such knowledge can help researchers designing Android-
specific refactoring techniques and prototypes that take into
consideration the hidden dependencies between such smells.
For tool creators, such knowledge can be helpful to develop
practical and reliable refactoring tools for mobile apps based
on the detection of the occurrence of Android code smells
given some traditional code smells or vice versa.

This paper aims at improving the current knowledge about
code smells in Android apps. We conduct an empirical study
on the prevalence of code smell co-occurrences and determine
which code smell types tend to co-exist more frequently. Our
empirical study is conducted on a large dataset composed of
1,923 open-source Android apps that are freely distributed
in Google Play Store. We considered 10 common types of
OO code smells, and 15 common Android smells having
different characteristics and different granularity levels. To
discover such relationships between smells, we use association
rule learning based on the Apriori algorithm [28] which is
commonly used to find patterns in data.

Overall, our investigation delivers several actionable find-
ings indicating that:

• The phenomenon of code smells co-occurrences is quite
prevalent in Android apps. Particularly, 51% of classes

are affected by more than one smell instance (from either
OO or Android smells), while 34% of classes are affected
by more than one Android smell, and 26% are affected
by more than one OO smells.

• There exist 14 smell pairs that frequently co-occur to-
gether: three pairs for Android smells (e.g., Leaking Inner
Class and Member Ignoring Method), seven pairs for
OO code smells (e.g., Long Method and Long Parameter
List) and four pair combining both Android and OO
(e.g., Complex Class and Member Ignoring Method). For
OO smells, our results are inline with prior findings in
the literature on code smells co-occurrences in desktop
applications [7], [11], [15]. However, for Android smells,
our findings reveal various interesting relationships in the
context of Android apps development.

• Some smells that were not involved in co-occurrences
(e.g., Lazy Class, Leaking Thread and Internal Get-
ter And Setter) are surprisingly frequent comparing to
other smells that were involved (e.g., Complex Class,
No Low Memory Resolver). Therefore, the observed co-
occurrences are not be just the result of the high diffuse-
ness of single code smell types.

The paper is structured as follows. Section II presents
the design of our empirical study, while Section III presents
and discusses our results. Section IV describes the threats to
validity of our study while Section V reports the implications
of our study. In Section VI, we review the related works.
Finally, Section VII draws our conclusions and future works.

II. STUDY DESIGN

The goal of this study is to investigate various types code
smell co-occurrences in the context of Android apps for the
purpose of assessing the prevalence of this phenomenon and
determining the pairs of smells that tend to co-occur together
frequently.

A. Goals and Research Questions

Our study aims at addressing the following research questions.

RQ1. To what extent code smells co-occur in Android apps?
This research question aims at assessing the extent to
which Android apps contain classes affected by one
or more code smell types. By answering RQ1, we can
reveal the prevalence of this phenomenon.

RQ2. Which code smells co-occur together?
With this research question, we aim at identifying which
code smells tend to co-occur together, and thus reporting
on the existence of different patterns of code smell co-
occurrences that can exist in Android apps.

RQ3. How prevalent are code smells?
This question represents an investigation into the distri-
bution of code smells in our dataset. The aim consists of
investigating if the co-occurrences found in RQ2 are just
the result of the prevalence of some code smell types.

B. Context and Dataset

The context of our study consists of a set of 1,923 open
source Android apps, and two categories of code smell types
that can exist in Android apps (1) traditional OO smells and
(2) Android specific smells. In particular, we analyzed 15
common Android smells extracted from the catalog defined
by Reimann et al. [3]. This catalog reports a set of poor
design/implementation choices applied by Android developers
that can impact non-functional attributes of Android apps, and
have been used by prior studies on Android smells [4], [9],
[11], [29]. We also considered 10 common traditional OO
smells defined by Fowler [2] and Brown et al. [1] that have
been widely studied in prior works [6], [7], [15]. These smells
have (1) different granularity, e.g., class, method, statement,
etc., and (2) varying characteristics, e.g., classes characterized
by long/complex code as well as violation of accepted OO
design and implementation principles. Tables I and II report
the set of OO and Android smells, respectively, that are
investigated in our study.

C. Data Extraction

Figure 1 describes the overall process used to collect our
dataset. We targeted real world apps that have been designed
and developed as open source projects and that are freely
distributed on Google Play Store and hosted on GitHub.

First, we performed a custom search on GitHub by targeting
all Java repositories in which the readme.md file contains
a link to a Google Play Store page (Step A). In total, we
obtained 19,212 apps. Thereafter, we filtered our dataset with
the following criteria inspired by [30], [31]:

• We consider only the repositories that contain the
AndroidManifest.xml file, as the apps whose
GitHub repository does not contain an Android manifest
file clearly do not refer to real Android apps. The result
of this filter was a collection of 5,766 apps.

• We excluded all unpublished apps, i.e., those apps for
which the corresponding Google Play page is not existing
anymore (i.e., removed from the store). Our filter returned
3,160 apps.

• We excluded repositories that contain forks of other
repositories. This filtering step leads to a final set of 1,923
Android apps.

Our final dataset resulting from the filtering process contains
1,923 real Android apps, each of them is represented by its
GitHub and Google Play identifiers. Then, we download the
source code of the last release from each app using git
clone command. The latter will serve for the next step:
collecting the code smells.

Thereafter (Step B), for each app we identify the presence of
any instance of OO and Android smell at the class level. As for
Android-specific smells, we used aDoctor1, a command-line
based tool that implements rules provided by Palomba et al.
[10] to identify common Android smells. We selected this tool
as it achieves a high detection precision of 98%, and recall of

1https://github.com/fpalomba/aDoctor

https://github.com/fpalomba/aDoctor

TABLE I: List of traditional Oriented-Object code smells [6], [15].

Abbreviation Code smell Description

BC Blob Class A large class implementing different responsibilities and centralizing most of the system processing.
CC Complex Class A class having at least one method having a high cyclomatic complexity.
FE Feature Envy A method is more interested in a class other than the one it actually is in.
LC Lazy Class A class having very small dimension, few methods and low complexity. It does not do enough to justify its existence.
LM Long Method A method that is unduly long in terms of lines of code.
LPL Long Parameter List A method having a long list of parameters some of which are avoidable.
MC Message Chain A long chain of method invocations is performed to implement a class functionality.
RB Refused Bequest A class that uses only some of its inherited properties while redefining most of the inherited methods, thus signaling a poorly-

designed hierarchy.
SC Spaghetti Code A class implementing complex methods interacting between them, with no parameters, using global variables.
SG Speculative Generality A class declared as abstract having very few children classes using its methods.

TABLE II: List of Android-specific code smells [3], [10].

Abbreviation Android smell Description

DTWC Data Transmission Without Compression A method that transmits a file over a network infrastructure without compressing it.
DR Debuggable Release Leaving the attribute android:debuggable true when the app is released.
DWL Durable Wakelock A method using an instance of the class WakeLock acquires the lock without calling the release.
IDFP Inefficient Data Format and Parser A method using treeParser, slows down the app, and should be avoided and replaced with other more efficient

parsers (e.g., StreamParser) [3].
IDS Inefficient Data Structure A method using HashMap <Integer,Object>.
ISQLQ Inefficient SQL Query A method defining a JDBC connection and sending an SQL query to a remote server.
IGS Internal Getter and Setter Accessing internal fields via getters and setters is expensive in Android development and, thus, internal fields should be

accessed directly.
LIC Leaking Inner Class A non-static nested class holding a reference to the outer class.
LT Leaking Thread An Activity starts a thread and does not stop it.
MIM Member Ignoring Method Non-static methods that do not access any internal properties.
NLMR No Low Memory Resolver A mobile app that does not contain the method onLowMemory.
PD Public Data A class that does not define the context or define the context as non-private.
RAM Rigid Alarm Manager A class using an instance of AlarmManager does not define the method setInexactRepeating.
SL Slow Loop Using the for-loop version.
UC Unclosed Closable A class that does not call such the close method to release resources that an object is holding.

TABLE III: Dataset statistics.

Statistic Count

Number of Android apps 1,923
Total number of classes 19,212
Total number of methods 134,400
Number of traditonal OO smell instances 29,550
Number of Android smell instances 23,267
Total number of all smell instances 52,817

98%, as reported in Palomba et al. [10]. As for the traditional
OO smells, we used an existing tool2, that has been widely
used in recent studies [6], [7], [15], [32]. The tool detects 10
common types of OO smells and implements simple detection
rules published by Bavota et al. [6] to ensure a high recall and
precision. The detection process resulted in identifying 29,550
instances of traditional OO smells, and 23,267 instances of
Android smells. Table III summarizes the statistics about the
collected dataset.

D. Data Analysis

After collecting all necessary data for our study, we use
specific analysis methods to answer each RQ (Step C).

1) Analysis method for RQ1: To answer RQ1, we compute
the number of smells affecting each class in the dataset. Then,
we report the percentage of classes affected by one or multiple
types of code smells.

2https://github.com/opus-research/organic

2) Analysis method for RQ2: To answer RQ2, we employ
association rule mining (also known as market basket anal-
ysis) using the Apriori algorithm [28]. The algorithm parses
the dataset, i.e., transactions, and generates frequent itemsets
based on filtering criteria set. Association rules are generated
during searching for frequent itemsets. An association rule is
defined as an implication of the form X ⇒ Y, where X, Y
⊆ I and X ∩ Y = ∅ . Let I = {i1, i2, ..., in} be a set of n
items, and T = {t1, t2, ..., tm} a set of m the transactions.
In our study, T is the set of classes present in version, and
each item in the set I indicates the presence of two specific
smell types. Therefore, an association rule translates a co-
occurrence between a smell Si and other smell Sj on the same
class. Specifically, the association rule is written as follows:
Smell(Si)⇒ Smell(Sj).

We use the support [28], confidence [28] and lift [33] scores
to quantify the degree of association between each pair of
smells.

1) Support: is an indication of how frequently an itemset
appears in the dataset and consists of the proportion of
transactions in the dataset that contain both Si and Sj .

Support(Si ⇒ Sj) = P (Si ∪ Sj) (1)

2) Confidence: is the proportion of transactions in the
dataset containing S i, that also contain S j.

Confidence(Si ⇒ Sj) = P (Si ∪ Sj)/P (Si) (2)

https://github.com/opus-research/organic

Answer RQ1

GitHub

1) GitHub
crawler

(19,212)

2) Android
manifest filtering

(5,766)

3) Google Play
Store filtering

(3,160)

4) Duplication
filtering
(1,923)

1,923
apps

Android smell
Detection Step C :

Data Analysis

OO code smell
Detection

Step B : Code
Smells Detection

Step A : Android apps collection

Answer RQ2

Answer RQ3

Fig. 1: Overall process to conduct our empirical study.

3) Lift: is the ratio of the observed support to that expected
if S i and S j were independent.

Lift(Si ⇒ Sj) = P (Si ∪ Sj)/(P (Si)× P (B)) (3)

The range of values for support and confidence is between
0 and 1, whereas lift can take any value between 0 and +∞.
When the lift value is greater than 1, it implies that the smell
pair is highly correlated.

Moreover, we use the Pearson’s Chi-square coefficient and
Cramer’s V [34] tests to determine if there were significant
associations between the smells. Specifically, for any Chi-
square test that was found to be significant (p-value < 0.001),
Cramer’s V test is calculated and it has a value between 0 and
1. A value of 0 indicates complete independence, and a value
of 1 indicates complete association. The formula is given in
Equation 4:

V =

√
χ2

n×min(row − 1, col − 1)
(4)

3) Analysis method for RQ3: To answer RQ3, we use
the collected Android and traditional OO smells for each
application as described in Step B. Specifically, for each code
smell type, we computed the diffusion of each smell type,
Si which corresponds to the ratio of the number of classes
infected by the smell Si over the total number of classes.

E. Replication package

Our dataset is available in our replication package for future
replications and extensions [35].

III. EMPIRICAL STUDY RESULTS

A. RQ1: To what extent code smells co-occur in Android
apps?

Table IV reports the obtained results for RQ1, for each
of the Android and OO code smells individually and also
when both categories are combined together (OO + Android
smells). Overall, we observe that the phenomenon of smells
co-occurrences is prevalent. For the Android smells, 30% of
classes are affected by a single Android smell instance, while
34% of classes are affected by two or more Android smell
instances (i.e., the sum of rows from “Two smells” to “Twelve
smells”). On the other side, for the traditional OO smells, we
observe that almost 30% of classes are affected by one OO
smell instance, while 26% of classes are affected by two or

more OO smells. It is worth noting that we did not find any
class affected by more than nine Android or OO code smell
types at the same time, as shown in Table IV.

When combining both Android and OO smells, we observe
from Table IV that 30% of classes are affected by only one
smell, while a majority of 52% of classes are affected by two
or more smells. Specifically, 18% of classes are affected by
exactly two smells, while co-occurrences of three and four
smells was observed in 12% and 7% of classes, respectively.
Interestingly, we also found that the percentage of classes
affected by five or more Android and OO smells is less than
5%.

To better understand the phenomenon of smells co-
occurrence, we refer to an illustrative example from the
Nextcloud3 app, version dev-202012234. In particular, the
FileContentProvider class contains 1,902 line of code
and 27 methods. This class is detected at the same time as Blob
Class and a Complex Class code smell as it contains several
complex methods. For instance, the method onUpgrade()
is a complex method having an extremely high cyclomatic
complexity of 136 5 making it difficult to comprehend, main-
tain, test and evolve. Furthermore, this method is detected
at the same time as a Long Method and a Message chain
code smell as it contains 966 lines of code and make 21
calls to other methods.In addition to these traditional OO
smells, this method holds also an Android smell, namely the
Slow Loop as it uses the standard version of the for loop
which is slow instead of using the for-each loop and this
that may affect the efficiency of the app [10]. From this
example, one clearly see how some code artefacts can be
impacted by several types of code smells. The presence of such
smell co-occurences severely impact the understandability,
maintainability and extensibility of any software application
[2], [13], [32], [36], [37].

Overall, the obtained results for RQ1 show that the co-
occurrence of code smells is indeed prevalent in Android
applications. Such prevalence advocates that there might be
a lack of awareness about this phenomenon from developers.
We thus assess which specific code smells tend to frequently
co-occur together.

3https://github.com/nextcloud/android
4https://github.com/nextcloud/android/releases/tag/dev-20201223
5https://scitools.com/

https://github.com/nextcloud/android
https://github.com/nextcloud/android/releases/tag/dev-20201223

TABLE IV: Prevalence of the code smells co-occurrences in the studied apps.

OO smells Android smells OO ∨ Android smells
Category Classes affected Percentage Classes affected Percentage Classes affected Percentage
One smell 5,772 30% 5,825 30% 5,696 30%
Two smells 1,644 9% 3,663 19% 3,526 18%
Three smells 1,477 8% 1,893 10% 2,278 12%
Four smells 788 4% 787 4% 1,429 7%
Five smells 629 3% 202 1% 1,049 5%
Six smells 290 2% 37 <1% 716 4%
Seven Smells 51 <1% 7 <1% 525 3%
Eight smells 2 <1% 1 <1% 334 2%
Nine smells 0 0% 0 0% 209 1%
Ten smells 0 0% 0 0% 112 1%
Eleven smells 0 0% 0 0% 43 <1%
Twelve smells 0 0% 0 0% 18 <1%

Summary for RQ1. The phenomenon of code smell co-
occurrences is quite prevalent. In a dataset containing
52,817 instances of Android and OO code smells, we
observe that 34%, 26% and 51% of classes are affected
respectively by more than one Android, OO and both (i.e.,
OO and Android) smell types. These results advocate for
the need of awareness mechanisms to support Android
developers discovering and removing code smells from their
apps.

B. RQ2: Which code smells co-occur together?

We address RQ2 by identifying the most frequent co-
occurrences of code smells in the studied apps. The procedure
that we used to identify the code smells co-occurrences are
described in Section II-D. To generate frequent itemsets, we
selected a minimum confidence of 0.5. We also restrict the
maximum number of items in every itemset to 2 since we
were interested in the association between one pair of smells.

Table VI presents the frequent itemsets where each itemset
comprises two smell types. We also conduct Chi-squared and
Cramer’s V tests to check whether the associations between
code smells are statistically significant or not. It is worth
noting that we found some reciprocal associations which are
due to variation in the confidence value. To better explain
this aspect, we illustrate in Table V a simplified example of
code smells co-occurrences at the class level where trans-
actions are the 6 classes and the items are the Si and Sj

smells. We observe that confidence(Si ⇒ Sj) = 0.5, while
confidence(Sj ⇒ Si) = 1. Thus, the two smells frequently co-
occur together in both ways. As for our analysis. overall, we
found that there are 14 pairs of code smells that frequently co-
occur together and 9 types of code smells that tend to compose
such co-occurrences.

The Complex Class code smell often co-occurs with other
code smell types, and in particular with Message Chain, Fea-
ture Envy and Member Ignoring Method. This result is likely to
be expected for Message Chain and Feature Envy smells since
complex classes are typically composed of several complex
and/or long methods that could be responsible for provok-
ing the long chain of method calls resulting in a Message

Chain code smell and including dependencies toward other
classes since they are composed of several code statements
resulting in a Feature Envy code smell. However the strong
association with the Member Ignoring Method was ambiguous
and thus, we perform some manual analysis to understand
reasons. we found that complex classes contain empty methods
(i.e., without instructions) created for prototyping purposes
and since they are empty they do not access any non-static
attributes or methods. Moreover, as shown in Table VI, all
these associations are statistically significant.

For the co-occurrence between Complex Class and Mes-
sage chain, a clear example was found in WiFi Ana-
lyzer application, in version V3.0.3-F-DROID6. The class
TitleLineGraphSeries is affected by the Complex
Class smell, and indeed its McCabe’s cyclomatic complex-
ity reaches 45. At the same time, the method draw() is
affected by the Message Chain and Feature Envy smells as it
recursively invoke 14 different methods such us hasNext()
and isNaN() and make extensive use of the width and
height attributes belonging to the View class to perform
some computation in order to draw the background. Hence,
this method implementation resulted into a poor cohesion
with a lack of cohesion that reaches 87%. As for the co-
occurrence between Complex Class and Member Ignoring
Method, we found that the class contains some empty methods
created for prototyping purposes such as getTitle() and
drawPoint(). and since they are empty they do not access
any attributes or methods.

The Feature Envy code smell often co-exists with two code
smell types namely Long Method and Long Parameter List. It
is worth noting that this association is reciprocal as shown in
Table VI. This association is an intended outcome since Long
Methods are composed of several code statements, accessing
of course the data of other classes, they are more prone to
also be affected by the Feature Envy code smell. Furthermore,
the association with Feature Envy and Long Method smells
frequently co-occur with a Long Parameter List. This could
be an expected consequence since long methods implement

6https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/releases/
tag/V3.0.3-F-DROID

https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/releases/tag/V3.0.3-F-DROID
https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/releases/tag/V3.0.3-F-DROID

TABLE V: A simplified example of code smells co-
occurrences.

Class Smell (Si) Smell (Sj)

Class 1 ×
Class 2 ×
Class 3 ×
Class 4 × ×
Class 5 × ×
Class 6 × ×

several class responsibilities, and thus they require a higher
number of parameters, increasing the chances of also being
affected by a Long Parameter List smell. Furthermore, as
shown in Table VI, the Feature Envy:Long Method smell
pair has the highest degree of association with a Cramer’s V
test value of 0.6

The co-occurrences between the Message Chain and the
Member Ignoring Method code smells are less obvious and
not expected. By conducting a qualitative investigation on
various samples of some co-occurences, we simply found that
the Complex Class often co-occurs with both Message Chain
and Member Ignoring Method. Thus the Message Chain has a
higher chance to be associated with Member Ignoring Method.

The Member Ignoring Method co-occur with other smell
types such as No Low Memory Resolver, Slow Loop and
Leaking Inner Class. These smells are associated since they
are related to the app’s performance and energy consumption,
i.e., the CPU time of a method or the memory usage of one
variable. This is a reason why the correction of such smells
can contribute to improve performance and user experience
without impacting the apps quality [11], [12], [29]. Moreover,
as shown in Table VI these smell pairs are significantly
associated.

For OO smells, our results are inline with prior findings
in the literature on code smells co-occurrences in desktop
applications [7], [11], [15]. However, for Android smells, our
findings reveal various interesting relationships that have not
been yet explored previously in the context of Android apps
development.

Summary for RQ2. Several pairs of code smells (14)
tend to co-occur very often, including three pairs from
Android-specific smells (e.g., Leaking Inner Class and
Member Ignoring Method), seven pairs from OO code
smells (e.g., Long Method and Long Parameter List) and
four from both Android and OO smells (e.g., Complex
Class and Member Ignoring Method).

C. RQ3: How prevalent are code smells?

Figure 2 reports the diffusion of code smells in terms of
the percentage of classes affected by each smell type in the
analyzed apps. We observe that 83% of all classes are affected
by code smells. This number reflects the widespread of code
smells in Android apps. However, it is worth noting that not all
code smells are frequently diffused. Indeed, the figure shows

Public Data

Ineff. Data Format & Parser
Durable Wackelock

Inefficient Data Structure

Inefficient SQL Query

Blob Class

Debuggable Release

Refused Bequest

Speculative Generality

Data Trans. Without Comp.
Spaghetti Code

Rigid Alarm Manager

Unclosed Closable

Internal Getter and Setter

No Low Memory Resolver

Slow Loop

Leaking Inner Class

Complex Class

Lazy Class

Long Method

Message Chain

Feature Envy

Long Parameter List

Leaking Thread

Member Ignoring Method

All smells

0% 10% 30% 37%

All smells

Android smells
OO smells

20%5% 25%15% 83%

Fig. 2: The diffusion of each code smell type across the studied
applications.

a significant disparity between the different code smell types.
Overall, we can observe three main levels of diffusion, (i)
frequently, (ii) moderately and (iii) low diffused smells.

• The most frequently diffused smells are the Member
Ignoring Method, Leaking Thread, Long Parameter List
and Feature Envy affecting each on average from 21% to
37% of classes.

• The moderately diffused smells include the Message
Chain, Long Method, Lazy Class, Complex Class, Inter-
nal Getter And Setter, No low Memory Resolver, Leaking
Inner Class and Slow Loop affecting each on average
from from 11% to 19% of the classes.

• The rest of smells are the least diffused ones affecting
each less than 10% of the classes.

As a consequence, these results highlight two interesting
observations: (1) the earlier cited smells which are the the most
diffused in our dataset are the ones that appear more frequently
in Android apps, and (2) the frequent associations between the
considered smells indicated in Table IV are not just the results
of code smells disparity. Indeed, results indicate that some
smells that were not involved in co-occurrences (e.g., Lazy
Class, Leaking Thread and Internal Getter And Setter) are
frequent comparing to other smells that were involved (e.g.,
Complex Class, No Low Memory Resolver). Therefore, the
observed associations are not be just the result of the high
diffuseness of single code smell types.

TABLE VI: Association rule mining results: the identified frequent itemsets of code smells co-occurrences.

Code smell item set #1 Code smell item set #2 Support Confidence Lift Chi-square p-values Cramer’s V
Feature Envy Long Method 0.120 0.572 3.725 <0.0001 0.601
Long Method Feature Envy 0.120 0.781 3.725 <0.0001 0.601
Long Method Long Parameter List 0.122 0.793 3.412 <0.0001 0.568
Complex Class Message chain 0.087 0.765 3.997 <0.0001 0.524
Complex Class Feature Envy 0.073 0.637 3.037 <0.0001 0.382
Long Parameter List Feature Envy 0.135 0.579 2.761 <0.0001 0.374
Feature Envy Long Parameter List 0.135 0.642 2.761 <0.0001 0.374
Member Ignoring Method No Low Memory Resolver 0.094 0.719 1.716 <0.0001 0.235
Leaking Inner Class Member Ignoring Method 0.078 0.712 1.699 <0.0001 0.208
Message Chain Member Ignoring Method 0.120 0.628 1.499 <0.0001 0.207
Member Ignoring Method Slow Loop 0.086 0.681 1.625 <0.0001 0.202
Complex Class Member Ignoring Method 0.074 0.651 1.554 <0.0001 0.169
Long Method Member Ignoring Method 0.092 0.598 1.426 <0.0001 0.154
Long Parameter List Member Ignoring Method 0.126 0.544 1.298 <0.0001 0.139

Summary for RQ3. Overall, code smells are not diffused
equally: the Member Ignoring Method, Leaking Thread,
Long Parameter List and Feature Envy are the most dif-
fused, each affecting from 21% to37% of classes. Further-
more, not all these smells constitute co-occurrences which
indicate the inferred co-occurences are not necessary the
result of the high diffuseness of some single smell types.

IV. THREATS TO VALIDITY

This section discusses threats to validity of the study.
Threat to construct validity could be related to the smells

detection. Both Android and OO code smells were automat-
ically detected using two widely used state-of-the-art tools.
We are aware that our results can be affected by the presence
of false positives and false negatives. While the performance
of both tools has been evaluated in previous research. For
Android smells, we used the aDoctor tool that has a precision
of 98% and a recall of 98% [6], [10], [11]. For OO smells, we
used organic which is an implementations of rules published
by Bavota et al. [6]. However, we cannot exclude that some
code smells were missed by our analysis or false positives
were considered.

Threat to conclusion validity could be related to the analysis
methods used in our study. While we exploited association rule
mining based on the Apriori algorithm, other methods such
logistic regression could be used. A part of our future work,
we plan to investigate the performance of other techniques.

Threat to external validity are related to generalizability of
our results. While we used a large sample of 1,923 open source
Android apps written in Java, we cannot generalize our results
to other open source or commercial mobile apps or to other
technologies.

Threats to reliability validity reflect whether the study has
been conducted and reported in a way that other researchers
and practitioners can replicate it and reach the same results. To
mitigate any reliability threats, we report all steps followed to
obtain the dataset for the investigated research questions and
provide links and/or references to the employed tools. More-
over, the employed dataset along with the variable values for
the statistical analysis is publicly available in our replication
package [35].

V. IMPLICATIONS

In this section, we discuss the implications that one can
derive from our results.

• Identifying refactoring opportunities to remove the co-
occurrences of code smells. Our study have shown that
the phenomenon of code smell co-occurrences is highly
spread in Android apps. It is widely accepted refactoring
techniques can be used to remove code smells, hence, the
use of such relationships from code smells co-occurrence
(i.e., code smell pairs that frequently co-occur together)
can provide a valuable knowledge to help identifying
which refactoring strategies (e.g., primitive or composite
refactorings) should be applied, and which are the most
difficult co-occurrences to be refactored. Since this is one
of the major research challenges, this study shed light on
the importance of developing practical refactoring tools
based on the information about co-occurrences of code
smells.

• Detecting and prioritizing code smells. The main goal
of our empirical study is to determine which code smells
co-occur together in Android apps, with the purpose of
exploring the relationships between them. Such knowl-
edge can help in improving code smell detection and
prioritization by researchers to design build recommen-
dation systems based on the interaction between code
smells. Furthermore, prioritizing the detection and the
removal could be beneficial for practitioners based on the
most (1) frequent and (2) harmful co-occurrences of code
smells. Such techniques can also notify developers on
the consequences of other smells that can co-occur with
the detected ones. For example, as depicted in Table VI,
a class affected by the Feature Envy or Message Chain
smell can be at a risk of becoming a Complex Class in the
future. Such techniques can be integrated in conjunction
with refactoring tools in modern development environ-
ments such as Eclipse and IntellJ IDE to recommend
appropriate refactorings.

• Predicting future introduction of code smells. The use
of co-occurrence information can provide an important
source of information to predict the potential appearance

of the same or another code smell in the future. Such
prediction can help in preventing these anomalies, and
serve as a warning to developers to increase their aware-
ness before these smells appear in their software systems.
For instance, our second research question shows that
Long Method and Long Parameter List tend to co-
occur together. The use of such information suggests that
developers should be careful about the emergence of these
co-occurrences in code base.

• Understanding the impact of code smells co-
occurrences on software quality. Investigating the ef-
fects of the co-occurrences of code smells on software
quality is crucial as it can bring unforeseen maintenance
efforts and costs. Various studies have explored the effects
of individual occurrences of code smells [15], [20], [25],
[38] in traditional software systems. On the other side,
other works have shown that classes affected by more
than one instance of code smells have a higher change-
proneness and fault-proneness as compared to classes
affected by a single instance [39]. As our study indicates
that developers can be often confronted with the phe-
nomenon of code smell co-occurrences in their codebase,
therefore it is crucial to eliminate these anomalies in early
stages of the development process to avoid the deterio-
ration of their code. Hence, the research community can
further perform an in-depth analysis on the impact of the
co-occurrences of code smells on various structural qual-
ity aspects such internal and external quality attributes,
and other performance quality aspects such as memory
and energy consumption in the context of mobile apps.
Such analysis can provide practical guidelines for mobile
apps refactoring.

VI. RELATED WORK

A number of studies have focused on detecting bad code
smells defined by Fowler et al. [2] and fixing them via
the application of refactoring. The code smell phenomenon
has been broadly investigated from different angles. Several
research works devised approaches and tools to automatically
detect code smells [10], [40]–[44], while other research efforts
focused on analyzing their relationship [7], [17]–[19], [39],
[45], [46], evolution [4], [47]–[50], diffusion [11], [22]–[24],
[51] and their impact on software quality attributes [21], [26],
[27]. In this section, we review the literature studying the
interactions between code smells and their effect, along with
the current state-of-the-art studies related to code smells and
refactoring in mobile applications.

A. Code smells and their impact on quality

Palomba et al. [15] conducted a large-scale empirical study
aimed at quantifying the diffuseness of the co-occurrence
phenomenon in terms of how frequently code smells occur
together. The results of this study indicate 59% of smelly-
classes are affected by more than one smell. In particular,
six smell types frequently co-occur together (e.g., Complex
Class and Message Chains). In the same context, Garg et

al. [17] investigate the co-occurrence of code smells in two
open-source software, Mozilla and Chromium. They observed
that co-occurrence patterns are presented in both the software
with a small variation in their co-occurrence percentage. Some
code smells are more common such as Data Clumps, Internal
Duplication, and External Duplication. Similarly, a study by
Fontana et al. [16] examined code smells co-occurrence in
a set of 111 open source systems. They observe that Brain
Method has the largest share of co-occurrences. However, they
found no co-occurrence between God Class and Data Class.
Recently, Muse et al. [19] studied a new category of SQL code
smells data-intensive systems finding that some traditional
code smells have a higher association with bugs compared
to SQL code smells.

As for studies investigating the effects between code smell
co-occurrences and code maintainability. Abbes et al. [21]
examined the interactions between code smells and their
effects. The authors concluded that when code smells appeared
isolated, they had no impact on maintainability, but when they
appeared interconnected, they brought a major maintenance
effort. Yamashita et al. [18] presented an extension study
on inter-smell relations in both open and industrial systems,
finding that the relation between smells vary depending on the
type of system taken into account. Yamashita and Moonen [25]
analyzes the impact of the interSmell relations in the main-
tainability of four medium-sized industrial systems written
in Java. The authors detect significant relationships between
Feature Envy, God Class and Long Method and conclude that
Inter-Smell relationships are associated with problems during
maintenance activities

B. Code smells and refactoring in mobile apps

Code smells have also been studied in the context of mobile
applications. Linares-Vásquez et al. [52] used DECOR to
detect object-oriented code smells through an analysis of 1,343
mobile apps. Their study show that code smells has a negative
impact on the fault-pronounce of apps. Tufano et al [53]
investigated the appearance of code smells in the code. The
authors studied the evolution of 200 open source projects
in which 70 of them were Android apps, finding that, the
code smell was most likely introduced when the file was
created. Mannan et al. [24] conducted a large-scale study of
500 apps in order to compare the distribution of code smells
in mobile and desktop apps. Their findings show that Android
and desktop apps are similar in terms of the detected code
smells using the tool InFusion. In another study that focused
on the energy efficiency of mobile apps, Morales et al. [54]
analyzed 59 apps and detected 8 code smells. The authors
found that number of refactorings have a positive effect on the
energy efficiency of mobile apps, while applying other type
of refactorings have a negative impact. In follow-up work,
Morales et al. [14] proposed an energy-aware refactoring tool,
named EARMD, that takes into account the energy consump-
tion when refactoring code smells defined by Fowler et al. [2].
In the same context, Palomba et al. [11] performed an analysis
of 9 Android-specific code smells instead of traditional code

TABLE VII: A summary of the literature on the impact of refactoring activities on Android/Mobile apps.

Study Year Focus # of Android/Mobile Apps Traditional / Android smell Smell Detection Tool

Linares-Vásquez et al. [52] 2014 Antipatterns & quality metrics 1,343 Yes / No DECOR
Tufano et al. [53] 2015 Code smell & their introduction 70 Yes / No DECOR
Hecht et al. [36] 2015 Tracking the quality of Android apps 106 Yes / Yes PAPRIKA
Hecht et al. [12] 2016 Performance impacts on Android smell 2 No / Yes PAPRIKA
Mannan et al. [24] 2016 Code smell in Android vs Desktop apps 500 Yes / No inFusion
Morales et al. [54] 2016 Antipatterns & energy efficiency 59 Yes / Yes ReCon
Carette et al. [29] 2017 Code smell & energy consumption 5 No / Yes HOT-PEPPER
Morales et al. [14] 2018 Impact of antipatterns on Andriod apps 20 Yes / No EARMO
Palomba et al. [11] 2019 Code smell & energy consumption 60 No / Yes ADOCTOR

smells in order to understand the impact of these smells on
energy efficiency along with understanding role of refactoring
on improving the performance of mobile apps. Their main
findings show that refactoring is considered to be a powerful
technique to reduce the energy consumption of methods. In
another studies that have been carried out by Hecht et al.
[12], [36], a code smell detection tool called PARPIKA,
was proposed to detect smells by analysing the bytecode
of Android apps. They found a positive correlation between
performance improvement in terms of delayed frame and CPU
usage and the smells considered in their study. Carette et al.
[29] designed a tool on top of PARPIKA to automatically
correct the smells after detecting them. Particularly, they
measured the energy consumption before and after the removal
of the smells. Recently, Habchi et al. [13] conduct a study
that covers eight Android code smells from 324 Android apps
having 255k commits, and contributions from 4,525 developers
to investigate if the main reason behind the accrual of code
smells is developers’ ignorance and oversight. Their results
revealed important research findings. Notably, they showed
that pragmatism, prioritization, and individual attitudes are
not relevant factors for the accrual of mobile code smells.
The problem is rather caused by ignorance and oversight,
which are prevalent among mobile developers. Furthermore,
they highlighted several flaws in the code smell definitions
currently adopted by the research community. For the sake of
clarity, we summarize these state-of-the-art studies in Table
VII.

We observe from the existing literature that most studies
focus basically on desktop applications while little knowledge
is available for mobile apps. Existing studies are merely
limited to some particular code smell types. In our study, we
focus basically on Android apps while considering the analysis
of both Android-specific and traditional OO code smells.

VII. CONCLUSION AND FUTURE WORK

The emergence of multiple code smells in the same code
element can have a significant impact on the system under-
standability and reduce the ability of developers to maintain
a software project, as indicated in several previous works
[21], [25], [55]. To further understand this phenomenon, we
investigated, in the paper, the co-occurrence of code smells in
Android apps on a large dataset of 1,923 open-source apps,
15 types of Android smells and 10 types of OO code smells.
We jointly analyzed (1) the prevalence of the co-occurrence

phenomenon, (2) code smell pairs that most tend to co-occur,
and (3) the prevalence of individual code smells to assess
whether or not the co-occurrence are just the result of high
diffusion of a specific smell type. The key findings of our
study indicate that:

• the co-occurrence phenomenon is quite prevalent in An-
droid apps with 34%, 26% and 51% of classes are
affected respectively by more than one Android, OO and
both (i.e., OO and Android) smell types.

• there exist 14 smell pairs that frequently co-occur to-
gether.

• The observed co-occurrences are not be just the result
of the high diffuseness of single code smell types since
we found that Some smells that were not involved in
co-occurrences (e.g., Lazy Class, Leaking Thread and
Internal Getter And Setter) are frequent comparing to
other smells that were involved in smell pairs (e.g.,
Complex Class, No Low Memory Resolver).

Our results have several actionable insights advocating the
necessity of awareness mechanisms for Android developers
to identify and prevent code smell occurrences in their code
bases. The gained knowledge from the phenomenon of code
smell co-occurrences can be used as a basis to further support
the detection, prioritization, prediction and correction of code
smells in the context of mobiles apps.

As future work, we plan to analyze other types of code
smells and investigate the impact of code smell co-occurrences
on internal and external quality attributes as well as other
performance aspects. We also plan to develop customized
Android app refactoring tools based on the information about
co-occurrences of code smells.

REFERENCES

[1] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,
AntiPatterns: refactoring software, architectures, and projects in crisis.
John Wiley & Sons, Inc., 1998.

[2] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[3] J. Reimann, M. Brylski, and U. Aßmann, “A tool-supported quality
smell catalogue for android developers,” in Proc. of the conference Mod-
ellierung 2014 in the Workshop Modellbasierte und modellgetriebene
Softwaremodernisierung–MMSM, vol. 2014, 2014.

[4] S. Habchi, R. Rouvoy, and N. Moha, “On the survival of android code
smells in the wild,” in International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2019, pp. 87–98.

[5] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez, “Understanding the impact of
refactoring on smells: A longitudinal study of 23 software projects,” in
Joint Meeting on Foundations of Soft. Engineering, 2017, pp. 465–475.

[6] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, 2015.

[7] F. Palomba, R. Oliveto, and A. De Lucia, “Investigating code smell
co-occurrences using association rule learning: A replicated study,”
in Workshop on Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE), 2017, pp. 8–13.

[8] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintain-
ability defects detection and correction: a multi-objective approach,”
Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2013.

[9] M. Kessentini and A. Ouni, “Detecting android smells using multi-
objective genetic programming,” in International Conference on Mobile
Software Engineering and Systems (MOBILESoft), 2017, pp. 122–132.

[10] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Lightweight detection of android-specific code smells: The adoctor
project,” in IEEE 24th international conference on software analysis,
evolution and reengineering, 2017, pp. 487–491.

[11] ——, “On the impact of code smells on the energy consumption of
mobile applications,” Information and Software Technology, vol. 105,
pp. 43–55, 2019.

[12] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the perfor-
mance impacts of android code smells,” in International conference on
mobile software engineering and systems, 2016, pp. 59–69.

[13] S. Habchi, N. Moha, and R. Rouvoy, “The rise of android code smells:
Who is to blame?” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 445–456.

[14] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: An energy-aware refactoring approach for mobile apps,” IEEE
Trans. on Software Engineering, vol. 44, no. 12, pp. 1176–1206, 2017.

[15] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “A large-scale empirical study on the lifecycle of code
smell co-occurrences,” Inf. and Soft. Technology, vol. 99, pp. 1–10, 2018.

[16] F. A. Fontana, V. Ferme, and M. Zanoni, “Towards assessing software
architecture quality by exploiting code smell relations,” in International
Workshop on Software Architecture and Metrics, 2015, pp. 1–7.

[17] A. Garg, M. Gupta, G. Bansal, B. Mishra, and V. Bajpai, “Do bad
smells follow some pattern?” in International Congress on Information
and Communication Technology. Springer, 2016, pp. 39–46.

[18] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter, “Inter-smell
relations in industrial and open source systems: A replication and com-
parative analysis,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 121–130.

[19] B. A. Muse, M. M. Rahman, C. Nagy, A. Cleve, F. Khomh, and
G. Antoniol, “On the prevalence, impact, and evolution of sql code
smells in data-intensive systems,” in International Conference on Mining
Software Repositories, 2020, pp. 327–338.

[20] J. Martins, C. Bezerra, A. Uchôa, and A. Garcia, “Are code smell
co-occurrences harmful to internal quality attributes? a mixed-method
study,” 34th SBES, pp. 1–10, 2020.

[21] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension,” in 2011 15th European Conference on
Software Maintenance and Reengineering. IEEE, 2011, pp. 181–190.

[22] M. Delchev and M. F. Harun, “Investigation of code smells in different
software domains,” Full-scale Software Engineering, vol. 31, 2015.

[23] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “On the distribution of test smells in open source android
applications: an exploratory study.” in CASCON, 2019, pp. 193–202.

[24] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen,
“Understanding code smells in android applications,” in Int. Conference
on Mobile Software Engineering and Systems, 2016, pp. 225–236.

[25] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell rela-
tions on software maintainability: An empirical study,” in International
Conference on Software Engineering, 2013, pp. 682–691.

[26] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design
flaws on software defects,” in 10th International Conference on Quality
Software, 2010, pp. 23–31.

[27] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-and fault-
proneness,” Empirical Soft. Eng., vol. 17, no. 3, pp. 243–275, 2012.

[28] R. Agrawal, T. Imielinski, and A. Swami, “Mining associations between
sets of items in large databases,” in International Conference on Man-
agement of Data, 1993, pp. 207–216.

[29] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of android smells,” in Int. Conference
on Software Analysis, Evolution and Reengineering, 2017, pp. 115–126.

[30] T. Das, M. Di Penta, and I. Malavolta, “A quantitative and qualitative
investigation of performance-related commits in android apps,” in 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2016, pp. 443–447.

[31] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago,
“How maintainability issues of android apps evolve,” in IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
2018, pp. 334–344.

[32] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.

[33] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” in International
conference on Management of data, 1997, pp. 255–264.

[34] H. Cramér, Mathematical methods of statistics. Princeton university
press, 1999, vol. 43.

[35] Dataset:, Link hidden for double blinded review, 2021.
[36] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking

the software quality of android applications along their evolution (t),” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2015, pp. 236–247.

[37] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[38] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. do Nascimento,
M. F. Freitas, and M. G. de Mendonça, “A systematic review on the code
smell effect,” Journal of Systems and Software, vol. 144, pp. 450–477,
2018.

[39] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code:
An empirical study,” in 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST). IEEE, 2016, pp. 5–14.

[40] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian
approach for the detection of code and design smells,” in 2009 Ninth
International Conference on Quality Software. IEEE, 2009, pp. 305–
314.

[41] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[42] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings. IEEE, 2004, pp. 350–359.

[43] M. J. Munro, “Product metrics for automatic identification of” bad
smell” design problems in java source-code,” in 11th IEEE International
Software Metrics Symposium (METRICS’05). IEEE, 2005, pp. 15–15.

[44] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[45] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Software
Engineering, vol. 20, no. 4, pp. 1052–1094, 2015.

[46] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 4–15.

[47] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in 2010 Seventh International Confer-
ence on the Quality of Information and Communications Technology.
IEEE, 2010, pp. 106–115.

[48] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells
using software repository mining,” in 2012 16th European Conference
on Software Maintenance and Reengineering. IEEE, 2012, pp. 411–
416.

[49] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in International symposium on empirical software engineering and
measurement, 2009, pp. 390–400.

[50] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “Tracking design
smells: Lessons from a study of god classes,” in Working Conference
on Reverse Engineering, 2009, pp. 145–154.

[51] N. Bessghaier, A. Ouni, and M. W. Mkaouer, “On the diffusion and
impact of code smells in web applications,” in International Conference
on Services Computing. Springer, 2020, pp. 67–84.

[52] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané, D. Poshyvanyk,
and Y.-G. Guéhéneuc, “Domain matters: bringing further evidence of
the relationships among anti-patterns, application domains, and quality-
related metrics in java mobile apps,” in Proceedings of the 22nd
International Conference on Program Comprehension, 2014, pp. 232–
243.

[53] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 403–414.

[54] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Anti-patterns and the energy efficiency of android applications,” arXiv
preprint arXiv:1610.05711, 2016.

[55] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
2012.

	Introduction
	Study Design
	Goals and Research Questions
	Context and Dataset
	Data Extraction
	Data Analysis
	Analysis method for RQ1
	Analysis method for RQ2
	Analysis method for RQ3

	Replication package

	Empirical Study results
	RQ1: To what extent code smells co-occur in Android apps?
	RQ2: Which code smells co-occur together?
	RQ3: How prevalent are code smells?

	Threats to validity
	Implications
	Related work
	Code smells and their impact on quality
	Code smells and refactoring in mobile apps

	Conclusion and Future Work
	References

