
Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack

Eman Abdullah AlOmar
Stevens Institute of Technology
Hoboken, New Jersey, USA

ealomar@stevens.edu

Moataz Chouchen
ETS Montreal, University of Quebec

Montreal, Quebec, Canada
moataz.chouchen.1@ens.etsmtl.ca

Mohamed Wiem Mkaouer
Rochester Institute of Technology

Rochester, New York, USA
mwmvse@rit.edu

Ali Ouni
ETS Montreal, University of Quebec

Montreal, Quebec, Canada
ali.ouni@etsmtl.ca

ABSTRACT
Modern code review is a widely used technique employed in both
industrial and open-source projects to improve software quality,
share knowledge, and ensure adherence to coding standards and
guidelines. During code review, developers may discuss refactor-
ing activities before merging code changes in the code base. To
date, code review has been extensively studied to explore its gen-
eral challenges, best practices and outcomes, and socio-technical
aspects. However, little is known about how refactoring is being
reviewed and what developers care about when they review refac-
tored code. Hence, in this work, we present a quantitative and
qualitative study to understand what are the main criteria devel-
opers rely on to develop a decision about accepting or rejecting a
submitted refactored code, and what makes this process challeng-
ing. Through a case study of 11,010 refactoring and non-refactoring
reviews spread across OpenStack open-source projects, we find
that refactoring-related code reviews take significantly longer to be
resolved in terms of code review efforts. Moreover, upon perform-
ing a thematic analysis on a significant sample of the refactoring
code review discussions, we built a comprehensive taxonomy con-
sisting of 28 refactoring review criteria. We envision our findings
reaffirming the necessity of developing accurate and efficient tools
and techniques that can assist developers in the review process in
the presence of refactorings.

CCS CONCEPTS
• Software and its engineering → Software evolution; Main-
taining software.

KEYWORDS
refactoring, code review, developer perception, software quality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem Mkaouer,
and Ali Ouni. 2022. Code Review Practices for Refactoring Changes: An
Empirical Study on OpenStack. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Refactoring is an essential practice to preserve code quality from
degradation, as software evolves. Refactoring has grown from the
act of cleaning the code, to play a critical role in modern software
development. Therefore, refactoring has been attracting various
researchers, with over three thousand research papers, according
to recent surveys [2]. Another key practice in maintaining software
quality is code review [15]. It has become another important to re-
duce technical debt, and to detect potential coding errors [15, 42, 70].
Code review represents the manual inspection of any newly per-
formed changes to the code, for the purpose of verifying integrity,
compliance with standards, and error-freedom [48]. Modern code
review is a lightweight tool-based process that heavily relies on dis-
cussions between commit authors and reviewers to merge/abandon
a given code change [91].

Similarly to any other code change, refactoring changes has to
also be reviewed before being merged.That is, if not applied well,
refactoring changes can have their side effects such as hindering
software quality [8, 37, 38, 62] and inducing bugs [18, 28] making
refactoring changes more challenging to review. However, little
is known about how reviewers examine refactoring related code
changes, especially when it is intended to serve the same purpose
of improving software quality. According to recent industrial case
study, AlOmar et al. [3] has found that reviewing refactoring related
code changes takes a significantly longer time, in comparison with
other code changes, demonstrating the need of refactoring review
culture. Yet, little is known about what criteria reviewers consider
when they review refactoring. Most of refactoring studies focus on
its automation by recommending refactoring opportunities in the
source code [49, 53, 86], or mining performed refactorings in change
histories of software repositories [87]. Moreover, the research on
code reviews has been focused on automating it by recommending
the most appropriate reviewer for a given code change [15]. How-
ever, despite the the wide adoption of refactoring in practice, its
review process is largely unexplored.

ar
X

iv
:2

20
3.

14
40

4v
1

 [
cs

.S
E

]
 2

7
M

ar
 2

02
2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Table 1: Related work in refactoring-related code review.

Study Year Research Type Research Method Purpose Evaluation Technique

Ge et al. [34, 35] 2014,2017 Tool-based code review Case & formative study Detect refactoring from non-refactoring changes 2 OSS & 35 developers
Alves et al. [13, 14] 2014,2018 Tool-based code review User study Inspect manual refactoring edits 3 OSS & 15 developers
Morales et al. [51] 2015 Empirical study Case study Understand the impact of code review on quality 3 OSS
Coelho et al. [24] 2019 Literature review Systematic mapping study Present refactoring solutions to MCR N/A
Pascarella et al. [59] 2019 Empirical study Case study Study the effect of code review on code smells 7 OSS
Paixão et al. [56] 2020 Empirical study Mining-based Study refactoring in MCR 6 OSS
Pantiuchina et al. [57] 2020 Empirical study Mining-based Study refactoring in pull requests 150 OSS
Uchôa et al. [89] 2020 Empirical study Mining-based Study MCR & design degradation 7 OSS
Uchôa et al. [88] 2021 Empirical study Mining-based Predict design impactful changes in MCR 7 OSS
AlOmar et al. [3] 2021 Empirical & industrial case study Case study & survey Understand refactoring challenges in MCR 24 developers
Brito & Valente [20] 2021 Tool-based code review User study Detect refactoring during code review 8 developers
Kurbatova et al. [44] 2021 Tool-based code review Mining-based Enhance IDE representation of changes 4 OSS
Coelho et al. [25] 2021 Empirical study Mining-based Study refactoring-inducing pull requests 350 OSS
This work 2022 Empirical & case study Mining-based Understand refactoring practices in MCR 2,225 OSS

The goal of this paper is to understand what developers care
about when they review code, i.e., what are the main criteria de-
velopers rely on to develop a decision about accepting or rejecting
a submitted refactored code, and what makes this process chal-
lenging. This paper seeks to develop a taxonomy of all refactoring
contexts, where reviewers are raising concerns about refactoring.
We drive our study using the following research questions:
RQ1. How do refactoring reviews compare to non-refactoring reviews
in terms of code review efforts?
RQ2.What are the criteria that mostly associated with refactoring
review decision?

To answer these research questions, we first extracted set of 5,505
refactoring-related code reviews, from OpenStack ecosystem. Then,
we compared this set of refactoring-related code reviews, with an-
other set of code reviews, in terms of number of reviewers, number
of review comments, number on inline comments, number of re-
vision, number of changed files, review duration, discussion and
description length, and code churn. Our empirical investigation indi-
cates that refactoring-related code reviews take significantly longer
to be resolved and typically triggers more discussions between de-
velopers and reviewers to reach a consensus. To understand the key
characteristics of reviewing refactored code, we perform a thematic
analysis on a significant sample of these reviews. This process re-
sulted in a hierarchical taxonomy composed of 6 categories, and 28
sub-categories. We also externally validated our taxonomy using a
survey of 11 questions related to our categories’ correctness and
representativeness. We also conducted a follow-up interview to
further discuss the survey outcomes.

We provide our comprehensive experiments package [65] to fur-
ther replicate and extend our study. The package contains the raw
data, analyzed data, statistical test results, survey questions, inter-
view transcription, and custom-built scripts used in our research.

The remainder of this paper is organized as follows: Section 2
reviews the existing studies related to refactoring awareness and
code review. Section 3 outlines our empirical setup in terms of data
collection, analysis and research question. Section 4 discusses our
findings, while the research implication is discussed in Section 5.
Section 6 captures any threats to the validity of our work, before
concluding with Section 7.

2 RELATEDWORK
Research on code review has been of importance to practitioners
and researchers. A considerable effort has been spent by the re-
search community in studying traditional and modern code review
practices and challenges. This literature has been includes case
studies (e.g., [3, 34, 35, 47, 51, 66, 70]), user studies (e.g., [14, 17, 63,
81, 92]), surveys (e.g., [3, 15, 45, 80]), and empirical experiments
(e.g., [36, 47, 51, 61, 81]). However, most of the above studies focus
on studying and improving the effectiveness of modern code review
in general, as opposed to our work that focuses on understanding
developers’ perception of code review involving refactoring. In this
section, we are only interested in research related to refactoring-
aware code review. We summarize these approaches in Table 1.

In a study performed at Microsoft, Bacchelli and Bird [15] ob-
served, and surveyed developers to understand the challenges faced
during code review. They pointed out purposes for code review
(e.g., improving team awareness and transferring knowledge among
teams) along with the actual outcomes (e.g., creating awareness
and gaining code understanding). In a similar context, MacLeod
et al. [45] interviewed several teams at Microsoft and conducted a
survey to investigate the human and social factors that influence
developers’ experiences with code review. Both studies found the
following general code reviewing challenges: (1) finding defects, (2)
improving the code, and (3) increasing knowledge transfer. Ge et
al. [34, 35] developed a refactoring-aware code review tool, called
ReviewFactor, that automatically detects refactoring edits and sep-
arates refactoring from non-refactoring changes with the focus
on five refactoring types. The tool was intended to support devel-
opers’ review process by distinguishing between refactoring and
non-refactoring changes, but it does not provide any insights on
the quality of the performed refactoring. Inspired by the work of
[34, 35], Alves et al. [13, 14] proposed a static analysis tool, called
RefDistiller, that helps developers inspect manual refactoring ed-
its. The tool compares two program versions to detect refactoring
anomalies’ type and location. It supports six refactoring operations,
detects incomplete refactorings, and provides inspection for manual
refactorings.

Coelho et al. [24] performed a systematic literature mapping
study on refactoring tools to support modern code review. They
raised the need for more tools to explain composite refactorings.
They also reported the need for more surveys to assess the existing

Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack Conference’17, July 2017, Washington, DC, USA

refactoring tools for modern code review in both open source and
industrial projects. Pascarella et al. [60] investigated the effect of
code review on bad programming practices (i.e., code smells). Their
approach mainly focused on comparing code smells at file-level
before and after the code review process. Additionally, they manu-
ally investigated whether the severity of code smells was reduced
in a code review or not. Their results show, in 95% of the cases,
the severity of code smells does not decrease with a review. The
reduction of code smells in remaining few cases was impacted by
code insertion and refactoring-related changes.

Paixão et al. [56] explored if developers’ intents influence the
evolution of refactorings during the review of a code change by
mining 1,780 reviewed code changes from 6 open-source systems.
Their main findings show that refactorings are most often used
in code reviews that implement new features, accounting for 63%
of the code changes we studied. Only in 31% of the code reviews
that employed refactorings the developers had the explicit intent of
refactoring. Uchôa et al. [89] reported the multi-project retrospec-
tive study that characterizes how the process of design degradation
evolves within each review and across multiple reviews. The au-
thors utilized software metrics to observe the influence of certain
code review practices on combating design degradation. The au-
thors found that the majority of code reviews had little to no design
degradation impact in the analyzed projects. Additionally, the prac-
tices of long discussions and high proportion of review disagree-
ment in code reviews were found to increase design degradation.
In their study on predicting design impactful changes in modern
code review with technical and/or social aspects, Uchôa et al. [88]
analyzed reviewed code changes from seven open source projects.
By evaluating six machine learning algorithms, the authors found
that technical features results in more precise predictions and the
use of social features alone also leads to accurate predictions.

A couple of studies considered pull requests as a main source of
the study code review process. Pantiuchina et al. [57] presented a
mining-based study to investigate why developers are performing
refactoring in the history of 150 open source systems. Particularly,
they analyzed 551 pull requests implemented refactoring opera-
tions and reported a refactoring taxonomy that generalizes the ones
existing in the literature. Coelho et al. [25] performed a quantita-
tive and qualitative study exploring code reviewing-related aspects
intending to characterize refactoring-inducing pull requests. Their
main finding show that refactoring-inducing pull requests take
significantly more time to merge than non-refactoring-inducing
pull requests.

AlOmar et al. [3] conducted a case study in an industrial set-
ting to explore refactoring practices in the context of modern code
review from the following five dimensions: (1) developers moti-
vations to refactor their code, (2) how developers document their
refactoring for code review, (3) the challenges faced by reviewers
when reviewing refactoring changes, (4) the mechanisms used by
reviewers to ensure the correctness after refactoring, and (5) de-
velopers and reviewers assessment of refactoring impact on the
source code’s quality. Their findings show that refactoring code
reviews take longer to be completed than the non-refactoring code
reviews. Brito & Valente [20] introduced RAID, a refactoring-aware
and intelligent diff tool to alleviate the cognitive effort associated

with code reviews. The tool relied on RefDiff [72] and is fully inte-
grated with the state-of-the-art practice of continuous integration
pipelines (GitHub Actions) and browsers (Google Chrome). The
authors evaluated the tool with eight professional developers and
found that RAID indeed reduced the cognitive effort required for
detecting and reviewing refactorings. In another study, Kurbatova
et al. [44] presented RefactorInsight, a plugin for IntelliJ IDEA that
integrates information about refactorings in diffs in the IDE, auto
folds refactorings in code diffs in Java and Kotlin, and shows hints
with their short descriptions.

To summarize, the study of open source projects that use either
the Gerrit tools or GitHub pull requests has been extensively stud-
ied (e.g., [57, 66, 85, 93]). Since notable open source organizations
such as Eclipse and OpenStack adopted Gerrit as their code review
management tool, we chose to analyze refactoring practice in mod-
ern code review from projects that adopted Gerrit as their code
review tool. Although there are recent studies that explored the
motivation behind refactoring in pull requests [25, 57], to the best
of our knowledge, no prior studies have manually extracted all the
criteria developers are facing when submitting their refactored code
for review. To gain more in-depth understanding of factors mostly
associated with refactoring review discussion and to advance the
understanding of refactoring-aware code review, in this paper, we
performed an empirical study on a rapidly evolving open source
project, with large number of files with 100% review coverage. This
study complements the existing efforts that are done in an indus-
trial environment [3] and an open source systems [25, 57] using
GitHub pull-based development.

3 STUDY DESIGN
The main goal of our study is to understand refactoring practice in
the context of modern code review to characterize the criteria that
influence the decision making when reviewing refactoring changes.
Thus, we aim at answering the following research questions:

• RQ1. How do refactoring reviews compare to non-refactoring
reviews in terms of code review efforts?

• RQ2. What are the criteria that mostly associated with refac-
toring review decision?

According to the guidelines reported by Runeson and Höst [69],
we designed an empirical study that consists of three steps, as
depicted in Figure 1. Since our research questions are both quan-
titative and qualitative, we used tools/scripts along with manual
activities to investigate our data. Furthermore, the dataset utilized
in this study is available on our project website [65] for extension
and replication purposes.
Gerrit-based code review process. The code review process of
the studied systems is based on Gerrit1, collaborative code review
framework allowing developers to directly tag submitted code
changes and request its assignment to a reviewer. Generally, a
code change author opens a code review request containing a title,
a detailed description of the code change being submitted, written
in natural language, along with the current code changes annotated.
Once the review request is submitted, it appears in the requests
backlog, open for reviewers to choose. Once reviewers are assigned

1https://www.gerritcodereview.com/

https://www.gerritcodereview.com/

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

 Phase 1: Data Collection

 Phase 3: Data Analysis

Select systems using 3 criteria:
1: Active MCR practices
2: Full review coverage

3: High refactoring-related reviews

Qualitative Analysis (RQ2)Quantitative Analysis (RQ1)

Review activity
metrics calculation

(refacatoring & non-refactoring)

Review activity
analysis

 Thematic analysis
 of review discussion

(refactoring)

Refactoring challenges
identification

Extract code review dataset
(775,657)

Use keyword-based approach
(5,547)

Analyze reviews manually

 Phase 2: Data Preparation

Remove false positive cases
(42)

Refactoring
review
dataset
(5,505)

Gerrit server

Code review
dataset

(775,657)
Mine code review

data

Figure 1: Overview of our experiment design.

to the review request, they inspect the proposed changes and com-
ment on the review request’s thread, to start a discussion with
the author. This way, the authors and reviewers can discuss the
submitted changes, and reviewers can request revisions to the code
being reviewed. Following up discussions and revisions, a review
decision is made to either accept or decline, and so the proposed
code changes are either “Merged” to production or “Abandoned”.
A diagram, modeling a simplified bird’s view of the Gerrit-based
code review process, is shown in Figure 2.

3.1 Data Collection
3.1.1 Studied Systems. To select the subject systems, we identified
three important criteria:
Criterion #1: Active MCR practices. Our goal is to study a sys-
tem that actively examines code changes through a code review
tool. Therefore, we focus on systems where a number of reviews
are performed using a code review tool (i.e., systems which have
review procedures in place), similar to [51, 83, 84].
Criterion #2: Full review coverage. Since we investigate the
practice of refactoring-related code reviews, we focus on systems
that have many files with 100% review coverage (i.e., files where

every change made to them is reviewed before they are merged into
the repositories), similar to the studies that explored code review
practices in defective files [47, 83, 84].
Criterion #3: High number of refactoring-related reviews.
Since we want to study refactoring practices in MCR, we need to
ensure that the subject systems have sufficient refactoring-related
instances to help us perform our statistical analysis. So, we selected
the project with the highest number of refactoring reviews.

To satisfy criterion 1, we started by considering five systems (i.e.,
OpenStack, 2 Qt ,3 LibreOffice, 4 VTK, 5 ITK 6) that use Gerrit code
review tool and have been widely studied in previous research in
MCR, e.g., [21, 32, 54, 82]. We then discarded VTK and ITK since
Thongtanunam et al. [84] reported that the linkage rate of code
changes to the reviews for VTK is too low and ITK does not satisfy
criterion 2. As for criterion 3, after mining the code review data, we
found that OpenStack has a higher number of refactoring-related

2https://review.opendev.org/
3https://codereview.qt-project.org/
4https://gerrit.libreoffice.org/
5http://vtk.org/
6http://itk.org/

Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack Conference’17, July 2017, Washington, DC, USA

code review instances than Qt and LibreOffice. Due to the human-
intensive nature of carefully studying and analyzing refactoring
practice in MCR, we opt for performing an in-depth study on a
single system. With the above-mentioned criteria in mind, we se-
lect OpenStack, an open-source software for cloud infrastructure
service that is developed by many well-known companies, e.g., IBM,
VMware, and NEC.

3.1.2 Mining code review data. We mined code review data using
the RESTful API7 provided by Gerrit, which returns the results in
a JSON format. We used a script to automatically mine the review
data and store them in SQLite database. All collected reviews are
closed (i.e., having a status of either “Merged” or “Abandoned”). In
total, we mined 775,657 code changes between December 2012 and
April 2021 from OpenStack projects. An overview of the project’s
statistics is provided in Table 2.

Table 2: Overview of the OpenStack studied system.

Item Count

Review period 12.16.2012 to 04.27.2021
Number of projects 2,225
Version Folsom to Stein
Line of code 31,680,274
No. of commits 4,137,446
No. of code changes 775,657
No. of developers 15,432
No. of files 705,982
Reviews with keyword ‘refactor*’ in title or description 10,440
Reviews with keyword ‘refactor*’ in title and description 5,547
False positive reviews 42
Refactoring review dataset 5,505
Final refactoring and non-refactoring reviews dataset 11,010

3.2 Data Preparation
To extract the set of refactoring-related code reviews, we follow a
two-step procedure: (1) automatic filtering, and (2) manual filtering.

(1) Automatic Filtering. In the first step, we utilize a keyword-
based mechanism to filter out all entries that do not contain the
keyword refactor* in both the title and description of the submit-
ted code change. Specifically, we start by searching for the term
‘refactor*’ in the title or description (we use * to capture exten-
sions like refactors, refactoring etc.). The keyword-based approach
has been widely used in prior studies related to identify refac-
toring changes or defect-fixing or defect-inducing changes [4, 6–
9, 11, 12, 25, 39, 41, 43, 48, 50, 57, 64, 76, 79, 84], as it allows the
pruning of the search space to only consider code changes whose
documentation matches a specific intention. The choice of ‘refac-
tor’, besides being used by various related studies, is intuitively
the first term to identify ideal refactoring-related code changes
[4, 7, 9, 10, 43]. Also, the choice of enforcing the existence of the
keyword in both code change’s title or description was piloted by a
first trial of only applying the filter to description. This initial fil-
tering gives us a total of 10,440 review instances. After performing
a manual inspection of a subset of these reviews, we realized that
there exist several false positive cases. To reduce them, we only
7https://gerrit-review.googlesource.com/Documentation/rest-apichanges.html

Submit a patch

R
ev

ie
w

 th
e

pa
tc

h

Request revisions

Merge approved patch

Address reviewers feedback

Gerrit code review tool

In
vi

te
 re

vi
ew

er
s

1

4

6a

6b

2 3

5 Notify

Figure 2: Gerrit-based code review process overview.

kept code changes having the term ‘refactor*’ in both the title and
description. The keyword-based filtering resulted in only selecting
5,547 code changes and their corresponding reviews. We notice that
the ratio of these reviews is very small in comparison with the total
number of the mined reviews, i.e., 775,657. However, these observa-
tions aligned with previous studies [52, 77] as developers typically
do not provide details when documenting their refactorings. Yet,
despite this strict filtering, this approach is still prone to high false
positiveness, and therefore, the second step of manual analysis is
needed.

(2) Manual Filtering. To ensure the correctness of data, we
manually inspected and read through all these refactoring reviews
to remove false positives. An example of a discarded review is: “Re-
vert "Refactor create_pool." and "Add request_access_to_groupmethod"”
[1]. We discarded this code review because the refactoring action
is undone by developers. This step resulted in only considering
5,505 reviews. Our goal is to have a gold set of reviews in which
the developers explicitly reported the refactoring activity. This gold
set will serve to check later criteria that are mostly associated with
refactoring review discussion.

3.3 Data Analysis
To address our research questions, a structuredmixed-method study
was designed to combine elements of both quantitative and qualita-
tive research.

3.3.1 Quantitative data analysis. We leverage the data collected
to compare refactoring and non-refactoring reviews using review
efforts, i.e., code reviewmetrics. As we calculate the metrics of refac-
toring and non-refactoring code reviews, we want to distinguish,
for each metric, whether the variation is statistically significant.
We first test for normality using Shapiro-Wilk normality test [78]
and we observe that the distribution of code review activity metrics
does not follow a normal distribution. Therefore, we use the Mann-
Whitney U test [26], a non-parametric test, to compare between the
two groups, since these groups are independent of one another. The

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

null hypothesis is defined by no variation in the metric values of
refactoring and non-refactoring code reviews. Thus, the alternative
hypothesis indicates that there is a variation in the metrics values.
Additionally, the variation between values of both sets is considered
significant if its associated p-value is less than 0.05. Furthermore, we
use the Cliff’s Delta (𝛿) [23], a non-parametric effect size measure,
to estimate the magnitude of the differences between refactoring
and non-refactoring reviews. As for its interpretation, we follow
the guidelines reported by Romano et al. [68]:

• Negligible for | 𝛿 |< 0.147
• Small for 0.147 ≤| 𝛿 |< 0.33
• Medium for 0.33 ≤| 𝛿 |< 0.474
• Large for | 𝛿 |≥ 0.474

To measure the extent of the relationship between these metrics,
we conducted a Spearman rank correlation test (a non-parametric
measure) [90]. We chose a rank correlation because this type of
correlation is resilient to data that is not normally distributed.

3.3.2 Qualitative data analysis. To answer RQ2, two of the au-
thors perform the analysis of the data. One of the author manually
inspects refactoring review discussions by considering both the
general comments and the inline comments, and the other author
reviews the taxonomy. As the complete list of refactoring review
data is too large to be manually examined, we select a statistically
significant sample for our analysis by considering the reviews with
higher review duration, and we annotated 384 reviews. This quan-
tity roughly equates to a sample size with a confidence level of 95%
and a confidence interval of 5. The manual analysis process took
approximately 40 days in total. Next, we describe the methodology
for building and refining the taxonomy, followed by the validation
method.

Taxonomy Building and Refinement. When analyzing the
review discussions, we adopted a thematic analysis approach based
on guidelines provided by Cruzes et al. [27]. Thematic analysis is
one of the most used methods in Software Engineering literature
(e.g., [73]), which is a technique for identifying and recording pat-
terns (or “themes”) within a collection of descriptive labels, which
we call “codes”. For each refactoring review, we proceeded with the
analysis using the following steps: i) Initial reading of the review
discussions; ii) Generating initial codes (i.e., labels) for each review;
iii) Translating codes into themes, sub-themes, and higher-order
themes; iv) Reviewing the themes to find opportunities for merging;
v) Defining and naming the final themes, and creating a model of
higher-order themes and their underlying evidence.

The above-mentioned steps were performed independently by
two authors. One author performed the labeling of review discus-
sions independently from the other author who was responsible for
reviewing the currently drafted taxonomy. By the end of each itera-
tion, the authors met and refined the taxonomy. At the time of the
study, one of the author had 4 years of research experience on refac-
toring, while the other author had 9 years of research experience
on refactoring.

It is important to note that the approach is not a single step pro-
cess. As the codes were analyzed, some of the first cycle codes were
subsumed by other codes, relabeled, or dropped all together. As
the two authors progressed in the translation to themes, there was

some rearrangement, refinement, and reclassification of data into
different or new codes. For example, we aggregated, into “Refactor-
ing”, the preliminary categories “incorrect refactoring”, “behavior
preservation violation”, “separation of other changes from refactor-
ing”, “interleaving other changes with refactoring”, and “domain
constraint” that were discussed by different reviewers. We used the
thematic analysis technique to address RQ2.

Taxonomy Validation. In addition to the iterative process of
building the taxonomy, we need to also externally validate it from
a practitioner’s point of view [30, 58]. The aim of this validation
is to investigate whether it reflects actual MCR practices. To do
so, we validated the taxonomy with a senior developer, with 8
years of industrial and refactoring experience, and with 6 years
of experience in code review. The survey contained 11 questions
related to the correctness and representativeness of our taxonomy.
We also conducted a follow-up interview to further discuss the
survey outcomes. The interview took an hour and was recorded
for further analysis. The interview summary is available in the
replication package.

4 RESULTS AND DISCUSSION
4.1 How do refactoring reviews compare to

non-refactoring reviews in terms of code
review efforts?

Approach. To address RQ1, we intend to compare refactoring re-
views with non-refactoring reviews, to see whether there are any
differences in terms of code review efforts or metrics listed in Table
3. Since our refactoring set contains 5,505 reviews, we need to sam-
ple 5,505 non-refactoring reviews from the remaining ones in the
review framework. To ensure the representativeness of the sample
[22], we use stratified random sampling by choosing reviews from
the rest of reviews.
Results. By looking at the statistical summary in Table 3, we found
that reviewing refactoring changes significantly differ (i.e., more
reviewers (𝜇 = 5.56), more review comments (𝜇 = 20.87), more inline
comments (𝜇 = 6.61), more revisions (𝜇 = 4.79), more file changes
(𝜇 = 5.98), lengthier review time (𝜇 = 928.21), discussions and de-
scriptions (𝜇 = 3450.29, 𝜇 = 327.61, respectively), and more added
and deleted lines between revisions (𝜇 = 367.63) from reviewing
non-refactoring changes. As shown in Table 3, we performed a
non-parametric Mann-Whitney U test and we obtained a statisti-
cally significant p-value when the values of these two groups were
compared (p-value < 0.05 for all review efforts), and accompanied
with a small, medium, or large effect size depending on the review
effort/metric.

We speculate that reviewing refactoring triggers longer discus-
sions between the code change authors and the reviewers as we
notice that several refactoring-related actions are being extensively
discussed before reaching an agreement. While previous studies
have found a similar pattern in GitHub’s pull requests in open-
source systems [25] and using code review tools in industry [3],
there is not a study that looked at what are the main reasons for
refactoring-related discussions to take significantly longer effort
to be reviewed. Therefore, the findings of RQ1 has motivated us

Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack Conference’17, July 2017, Washington, DC, USA

Table 3: Statistics of code review activity efforts.

Metrics
Refactoring code review Non-refactoring code review Statistical difference

Min Q1 Median Mean Q3 Max Min Q1 Median Mean Q3 Max p-value Cliff’s delta (𝛿)

Number of reviewers 0 2 4 5.65 6 12 0 2 3 4.45 5 9 6.750458e-43 small (0.15)
Number of review comments 0 5 9 20.87 19 40 0 3 6 13.05 12 25 2.730193e-82 small (0.22)
Number of inline comments 0 0 0 6.61 5 12 0 0 0 3.26 1 2 2.066649e-98 medium (0.33)
Number of revisions 1 1 3 4.79 6 13 1 1 2 3.19 3 6 1.252695e-126 small (0.3)
Number of changed files 0 1 3 5.98 6 13 0 1 1 3.69 3 6 6.006899e-190 medium (0.33)
Review duration (seconds) 0 37 170.68 928.21 606.22 1458.68 0 12.85 75.98 738.93 351.03 852.99 2.572584e-66 small (0.23)
Length of discussion (characters) 0 168 451 3450.29 1563 3653 0 110 296 1962.39 1044 2436 6.966752e-42 small (0.15)
Length of description (characters) 62 171 264 327.61 388 711 56 124 218 276.97 354 699 4.071541e-41 small (0.13)
Code churn -1 40 114 367.63 309 711 0 3 11 201.58 53 128 0.000000e+00 large (0.64)

to manually analyze these reviews and extract the main criteria
related to reviewing refactored code (RQ2).

Further, we observe that refactoring related code reviews im-
pact larger code churn and more changes across files than non-
refactoring code changes. These results are expected and are in
agreement with prior works [25, 40, 55], which found that refac-
tored code has higher size-related metrics and larger changes pro-
mote refactorings. We also notice that the number of developers
who participated in the refactoring code review process is also
higher due to the high number of added, modified, or deleted lines
between revisions. In contrast to a previous finding [25], however,
no evidence of the correlation between the number of reviewers
and refactoring was detected.

Moreover, our correlation analysis is measured using the Spear-
man rank correlation test reveals that the number of review com-
ments, discussion length, and number of revisions are highly corre-
lated with the review duration. The Spearman rank correlation test
yielded a statistically significant (i.e., p-value < 0.05) correlation
coefficient of 0.57, 0.53 and 0.49, respectively. Further, the number
of reviewers are highly correlated with the discussion length and
number of review comments with p-value < 0.05 and correlation
coefficient of 0.73 and 0.77, equating to a strong correlation. Addi-
tionally, we observe that very high number of deleted or added lines
are correlated with very high number of file changes (i.e., p-value
< 0.05 and correlation coefficient of 0.58). In contrast, the Spear-
man’s correlation values detect no significance in the relationship
between the number of files and review duration.

4.2 What challenges do developers face when
reviewing refactoring tasks?

Approach. To get a more qualitative sense, we manually inspect
the OpenStack ecosystem using a thematic analysis technique [27],
to study the challenges that reviewers catch when reviewing refac-
toring changes, so we understand the main reasons for which refac-
toring reviews take longer compared to non-refactoring reviews.
Results. Upon analyzing the review discussions, we create a com-
prehensive high-level categories of review criteria. Figure 3 shows
the proposed taxonomy of the criteria related to reviewing refac-
tored code. The taxonomy is composed of two layers: the top layer
contains 6 categories that group activities with similar purposes,
whereas the lower layer contains 28 subcategories that essentially
provide a fine-grained categorization. Due to space constraints, we
made the iterative taxonomy available in our replication package

[65]. These refactoring review criteria are centered around six main
categories as shown in the figure: (1) quality, (2) refactoring , (3) ob-
jective , (4) testing, (5) integration, and (6) management. It is worth
noting that our categorization is not mutually exclusive, meaning
that a review can be associated with more than one category. An
example of each category is provided in Table 4. Further, according
to the interview with the senior developer, they conformed that
our taxonomy is representative of the reviews cases they have ex-
perienced. In the rest of this subsection, we provide more in-depth
analysis of these categories.
Category #1: Quality. The design quality is found to be a vital
part of the refactoring review process. According to the review
discussions, reviewers enforce the adherence to coding convention,
optimization of internal quality attribute, external quality attribute,
the avoidance of (i.e., code smell, resolution of technical debt, correct-
ness of design pattern implementations), and lack of documentation.
For instance, developers recommend appropriate ways to write
code, optimize internal and external quality attributes as developers
may not draw the full picture of the software design, which makes
their decision adequate locally, but not necessarily at the global
level. Moreover, developers only reason on the actual snapshot of
the current design, and there is no systematic way for them to
recognize its evolution by, for instance, accessing previously per-
formed refactorings. This may also narrow their decision making,
and they may end up reverting some previous refactorings. More-
over, providing a clear and meaningful explanation of the reasons
behind the proposed changes are equally important in review de-
cisions. The requested documentation change includes (but is not
limited to) expanding code comments, removing code smells, and
reusing existing functionality. Further, developers typically refactor
classes and methods that they frequently change. We observe this
as various reviews were containing similar recurrent files. So, the
more they change the same code elements, the more familiar with
the system they become, and so it improves their design decisions.
While the follow-up interview indicates the importance of each
sub-category in real life, it was pointed out by the senior devel-
oper that technical debt was not allowed to be submitted since the
company has a strict policy preventing developers from submitting
near optimal code. Additionally, according to the senior developer’s
experience, reviewers did allow the relaxation of design patterns
strict implementations, as long as it is properly justified.
Category #2: Refactoring. This category gathers reviews with a
focus on evaluating the correctness of the code transformation and
checking whether or not the submitted changes lead to a safe and

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Figure 3: Refactoring review criteria in modern code review.

trustworthy refactoring. These reviews discuss refactoring correct-
ness, behavior preservation, refactoring co-occurrence with changes,
and domain constraint. Because developers interleave refactorings
with other tasks, reviewers highlighted that mixing refactoring
with other changes may lead to overshadowing errors, and so the
intrusion of bugs. Similar concerns were also raised by the senior
developer during our interview. In their regular reviews, they would
typically recommend the separation of refactoring from other code
changes, whenever possible.
Category #3: Objective. In this category, we have gathered cases
where reviewers eventually ask to clearly document the goal, bene-
fit, side effects, scope, feature-related, and bug fix-related activities to
better understand the rationale of the submitted code changes. This
reveals how reviewers keep proposing areas of improvement in
developers’ documentation practices, pertaining to the perception
and the rationale of the change. It appears that the clarity of the
documented changes is of paramount importance as reviewers also
struggle with identifying the benefit and/or side effects and spend
time understanding them. We realized that the clarity of the expla-
nation of what is being changed and why affects review time and
decision. Missing rationale and documentation are also frequently
reported as confusing during code review [31]. Reviewers are re-
quested to clarify the scope of the change. Changing the scope is
one of the influential factors for reviewers to make their decisions.
Reviewers check the actual appropriateness of the change before
it is merged into the code base. Further, we realized that source
code is not the only artifact that developers refactor. Other artifacts,
such as database elements, are also subject to refactoring. During
the follow up interview, the senior developer indicated that unclear
goal and unknown benefit were less likely to be encountered due
to the company review guidelines. Also bug fixing is not frequent
in the expert’s current company because of the enforcement of
performing minimal refactoring changes when fixing bugs.

Category #4: Testing. Refactoring is supposed to preserve the be-
havior of the software. Ideally, using the existing unit tests to verify
that the behavior is maintained should be sufficient. However, since
refactoring can also be interleaved with other tasks, then there
might be a change in the software’s behavior, and so, unit tests may
not capture such changes if they were not revalidated to reflect
the newly introduced functionality. We have seen various reviews
discussions raising this concern, especially when developers are un-
aware of such non behavior preserving changes, and so, deprecated
unit tests will not guarantee the refactoring correctness. Based on
our analysis of the discussion, reviewers suggested adding unit tests
before the refactoring, so that they can be more confident the code
has not broken anything. They also recommend adding test cases
when the refactored code lowers the test coverage (e.g., extracting
new methods). Moreover, when developers submit a review, they
can include the results of running the tests as reviewers expect code
changes to be accompanied by a corresponding test change. So, to
capture these various cases, under the Testing category, we have
the following sub-categories: lack of coverage, absence of result, and
poor test quality. The outcome of the interview shows the existence
of this type of review criteria.
Category #5: Integration. This category gathers reviews high-
lighting how refactoring has complicated the merging process, or
triggered configuration issues. Several sub-categories raise, namely,
configuration issue,merge failure, API management, and build failure.
These categories show that refactoring may complicate the review
process. As per our analysis, it appears that the code changes in-
volving refactoring reviews tend to be more problematic for failure
or issue, compared to non-refactoring reviews. This observation is
partially in lined with previous studies [29, 46]. They found that
merge conflicts that involve refactoring are more complex than
conflicts with no refactoring changes. Moreover, we noticed that
API upgrades and migrations typically trigger discussions, mainly

Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack Conference’17, July 2017, Washington, DC, USA

when there are API breaking changes. Developers tend to ask about
the appropriate migration plans and the necessary changes to pre-
serve the software’s behavior during the migration process. Despite
the existence of various tools to support the detection of breaking
changes, discussions revealed that this process is still manual. Be-
sides agreeing with the existence of these types subcategories, the
participant also reported that his current company supports devel-
opers with review bots to early detect any merge-related issues.

Category #6: Management. Another category emerged from the
manual coding analysis is review management. The subcategories
we found were no ongoing review activity, forgotten review, change
dependency, and review guideline violation. In other words, we ob-
serve that some of the reviews take longer due to a lack of reviewer
attention, as there is a case of little prompt discussion about the
proposed changes. For instance, some reviews received a review
score of +1 from a reviewer, but there was no other activity after
waiting a couple of days or months. The follow-up interview con-
firms that this category is common in industry. Reviewers have
their own workload, and some discussions can be subject to delays
depending on the developer and reviewers’ participation [83].

5 IMPLICATIONS
5.1 Implications for Practitioners
Establishing guidelines for refactoring-related reviews. Our
taxonomy shows reviewing refactoring goes beyond improving the
code structure. To improve the practice of reviewing refactored
code, and contribute to the quality of reviewing code in general,
managers can collaboratively work with developers to establish
customized guidelines for reviewing refactoring changes which
could establish beneficial and long-lasting habits or themes to accel-
erate the process of reviewing refactoring. Additionally, since our
RQ2 findings show that integration and testing are one of the chal-
lenges caught by developers when reviewing refactoring changes,
it is recommended to utilize continuous integration to keep the
testing suite in sync with the code base during and after refactor-
ing. Further, adherence to coding conventions is considered one of
difficulties when reviewing refactoring tasks. To cope with this chal-
lenge, we recommend project leaders to educate their developers
about the coding conventions adopted in their systems. Considering
the above-mentioned characteristics not only save developers time
and effort, but also can assist taking informed decision and bring a
discipline toward reviewing code involving refactorings within a
software development team.

5.2 Implications for Researchers
Exploring the potential of combiningmultiple behavior preser-
vation strategieswhen reviewing refactorings.Our study shows
that preserving the behavior of software refactoring during the code
review process is a critical concern for developers, and developers
determine whether a behavior is preserved based on the context.
Recently, AlOmar et al. [5] aggregated the behavior preservation
strategies that have been evaluated using single or multiple refac-
toring operations, and some of these refactorings are applied using
multiple strategies. In order to accelerate the process of review-
ing code involving refactoring, future researchers are advised to

explore the potential of combining several behavior preservation
approaches and use those which would be useful in the context
of modern code review according to a defined set of criteria. For
instance, Soares et al. [75] have implemented the tool ‘SafeRefactor’
to identify behavioral changes in transformation. It would be an
interesting idea to verify the correctness after the application of
refactoring by embedding test results and generating a test suite
for capturing unexpected behavioral changes in code review board.

Supporting for the refactoring of non-source code arti-
facts. From RQ2, we discover that refactoring operations are not
limited to source code files. Artifacts such as databases and log
files are also susceptible to refactoring. Similarly, we also observed
discussions about refactoring test files. While it can be argued that
test suites are source code files, recent studies by [9, 57] show
that the types of refactoring operations applied to test files are
frequently different from those applied to production files. Hence,
future research on refactoring is encouraged to introduce refactor-
ing mechanisms and techniques exclusively geared to refactoring
non source code artifact types and test suites.

5.3 Implications for Tool Builders
Developing next generation refactoring-related code review
tools. Finding that reviewing refactoring changes takes longer than
non-refactoring changes reaffirms the necessity of developing ac-
curate and efficient tools and techniques that can assist developers
in the review process in the presence of refactorings. Refactoring
toolset should be treated in the same way as CI/CD tool set and
integrated into the tool-chain. Researchers could use our findings
with other empirical investigations of refactoring to define, validate,
and develop a scheme to build automated assistance for reviewing
refactoring considering the refactoring review criteria as review
code become an easier process if the code review dashboard aug-
mented with the factors to offer suggestions to better document
the review.

Moreover, we noticed that poorly naming the code elements is
one of the major bad refactoring practices typically catch by devel-
opers when reviewing refactoring changes. Constructing tools that
enforce code conventions aid in speeding up reviewing refactoring
changes and benefiting reviewers to focus on deeper design defects.
Furthermore, to accelerate code review process and limit having a
back-and-forth discussion for clarity on the problem faced by the
developer, tool builders can develop bots for the integration, testing,
and management categories. Additionally, it would be interesting
to use a popular and widely adopted quality framework, e.g., Qual-
ity Gate of SonarQube [33], as part of quality verification process
by embedding its results in the code review. This might facilitate
convincing the reviewer about the impact and the correctness of
the performed refactoring.

6 THREATS TO VALIDITY
In this section, we describe potential threats to validity of our
research method, and the actions we took to mitigate them.

Internal Validity. Concerning the identification of refactoring
related code review, we select reviews with the keyword ‘refac-
tor*’ in their title and description. Such selection criteria may have
resulted in missing refactoring-related reviews and there is the

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Table 4: A taxonomy of the refactoring review criteria in Modern Code Review.

Category Sub-category Example (Excerpts from a related refactoring review discussion)

Quality

Code smell

“I do understand the desire to refactor some code to eliminate duplicate code. The purpose of the common class was to contain
all of the duplicate code between the 2 drivers. This seems like a half baked approach to refactoring to accomplish that goal, when
the common class should have been used as a new base. Now with this patch there are 2 classes (base and common) that contain
common code.”

Internal quality attribute “I think there is still an inheritence problem with the Base2 class (see inline) and the way python handles multiple inheritence
means we have to be careful when creating the UTF8 versions of the unittest classes.”

External quality attribute “Looking through the series i found enough such code to see that it does not look easy readable.”

Technical debt “I was trying to use exception.ARQInvalidState with assertRaises, but found we had some technical debts, so use Exception
instead to check the error message.”

Design pattern “I think the alternative should be what other refactor possibilities are. The proposed change indicates some of the methods that are
being planned to be implemented. As an alternative to evolve this library in future we need another design pattern.”

Coding convention
“We’ve seen how difficult it is to arrive at a single naming convention that works for all OpenStack projects, but as Rally
expands beyond benchmarking OpenStack alone, it is quite simply impossible to create a single name format that will work for
literally everything.”

Lack of documentation “Is there a documentation somewhere explaining how to define "extra" dependencies? It would be nice to have a link somewhere.
IHMO dependencies are a very complex problem, and extra dependencies look even more complex to me.”

Refactoring

Refactoring correctness
“I think, this piece is incorrectly refactored. You should create neutron.conf.agent.linux with IP_LIB for linux and corresponding
change for neutron.conf.agent.windows with IP_LIB for windows. Then you could import it, similar to this, how it was done
previously.”

Behavior preservation “Refactoring involves "behavior-preserving transformations", but this change does change behavior. Describing it as refactoring
is misleading and suggests the change is less risky than it really is”

Refactoring co-occurrences
with changes

“I would have separate this change from your refactor. The value returned by this function is transferred to the compute
manager and to the virt drivers. Some of them could have considered True/False/None to handle different behavior and even if that
is not the case, to have this isolated can help reviewer to ensure all is OK.”

Domain constraint

“Looking through the series i found enough such code to see that it does not look easy readable. It operates with StoragePolicy’s
properties which are initialized there and here we can guess only what they mean (e.g. external_boot). StoragePolicy knows all
about disks, what kinds of disks exists, what disks are used by instance, etc. It would be consistent to move such operations
into that class as well. Or at least to add an iterator over disks there and to use it”

Objective

Unclear goal
“with regards to the refactor. The plan was to make a progressive refactor that would keep the old API around while the new one is
adopted. Themotivations behind this refactor are related to the lack of any kind of architecture and design in the current code.
The current code, as it is, is not easily consumable by other services, which is the whole point of this library.”

Unknown benefit “I would like understand what is the added value or improvement with these changes to l3-agent scheduler.”
Potential side effect “It seems promising, but the change in pattern, if not thoroughly thought out, may lead to other unforeseen side effects.”

Change scope

“Well I think IloISCSIDeploy name wins over IloPXEDeploy. This is no longer tied to a particular boot interface and can work
with other boot interfaces (like virtual media when other driver is refactored). But I missed what Ruby pointed out, it’s doing
pxe.<something> for now. Needs to be refactored but may be better in another patch. We have enough content in this patch alone
which refactors the generic upstream driver. So I think it’s better to refactor in next patch.”

Feature support “Isn’t this a whole new feature, and not just a refactor? IMHO this should be its own spec.[...] Yes, this is new feature and cannot
be implemented by only this refactoring. This feature depends on the refactoring. I agree with you to create a spec”

Bug fixing “I don’t think some of this patch is needed since we merged Gage’s fix. On the other hand, this change seems to be doing quite a bit
of refactoring. Is there a reason to continue pursuing that refactor, or was it mainly to fix the bug?”

Testing

Lack of coverage “Is there enough coverage on this to ensure that all changes are tested?”

Absence of result “I should read more closely... this was intended according to the commit message: "for patches that get ’rechecked’ a lot, you’ll see
the whole history of test results on current patch".”

Poor test quality
“What do you think of continuing to clean up the test infrastructure as you’ve started here and create good examples of what to do?
We could document how to write good tests so that authors and reviewers could ensure the quality of new additions, and require
rewriting of existing tests only as needed rather than attempting the monumental effort of fixing the entire unit test tree.”

Integration

Configuration issue

“IMO also some detailed configuration example and illustration is needed in etc/designate.conf - My concern is that, not specifically
against patch but for whole project, we add all these new functionalities but people don’t know how to use/configurate it. An
example is option ’options’ in many config sections. It varies a lot from different types of backend/pool_target, but we didn’t
document them well. People(at least me) need to read the source code to figure out how to configure that correctly. Maybe we
should come up with a patch fix this in short future.”

Merge conflict “This seems like it’s mostly just going to cause merge conflicts with a lot of outstanding code.”

API management

“This seems to be a breaking change in the interface, meaning this new cli wouldn’t work with the old api and vice versa. I
think it would be appropriate if this new code (in the API) produced dag_execution_date on the action dictionary returned, so as to
be backwards compatible with old clients, and this new client should probably sniff this for the new way, and revert to the old way
if needed”

Build failure “Build failed (check pipeline). For information on how to proceed, see http://docs.openstack.org/infra/manual/developers.html#automated-
testing.”

Management

No review activity “This patch has been idle for a long time, so I am abandoning it to keep the review clean sane. If you’re interested in still working
on this patch, then please unabandon it and upload a new patchset.”

Forgotten review “I see that this change has not been updated since April 23rd. I also see that there have been no responses from you to the questions
Mark asked inline on the most recent patchset. Do you intend to continue working on this change?”

Change dependency “This is a significant enough change that I think it warrants discussion with the drivers team and a spec.”

Review guideline violation
“This is much more readable than before, but I would like to see a satisfactory answer to the question of why this is necessary,
before this is merged. As far as I am aware, there is no consensus from OpenStack on following this guideline; do you have a
spec for this work?”

Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack Conference’17, July 2017, Washington, DC, USA

possibility that we may have excluded synonymous terms/phrases.
However, even though this approach reduces the number of reviews
in our dataset, it also decreases the false positiveness of our selec-
tion. While our data collection may results in missing some reviews,
our approach ensures that we analyze reviews that are explicitly
geared towards refactoring. In other words, these are reviews where
developers were explicitly documenting a refactoring action and
they wanted it to be reviewed. Additionally, upon performing the
manual inspection on review discussions, we realized that refactor-
ing is heavily emphasized on discussions that start with a title or a
description containing the keyword ‘refactor*’. Yet, this does not
prevent other discussions from bringing refactoring into the picture,
and these will be missed by our selection (i.e., false negatives). We
opted for such picky selection to only consider discussions when
code authors explicitly wanted their refactored code to be reviewed,
and so reviewers eventually propose a refactoring-aware feedback,
which is what we are aiming for in this study. Therefore, it would
be interesting to consider scenarios where reviewers have raised
concerns about refactoring a code change that was not intended
to be associated with refactoring. Since refactoring can easily be
interleaved with other functional changes, it would be interesting
to extract scenarios where reviewers thought it was misused. Study
can also help developers better understand not only how to refactor
their code, but also how to document it properly for easier review.

Further, we focus on the code review activity that is reported
by the tool-based code review process, i.e., Gerrit, of the studied
systems due to the fact that other communication media (e.g., in-
person discussion [19], a group IRC [71], or a mailing list [67]) do
not have explicit links of code changes and recovering these links
is a daunting task [16, 84].

Construct Validity. About the representativeness and the cor-
rectness of our refactoring review criteria, we derive these criteria
from a manual analysis of a subset of refactoring-related reviews
that have lengthier review duration. This approach may not cover
the whole spectrum of all the review criteria done with refactoring
in mind. To mitigate this threat, we reviewed the top 7.3% lengthier
refactoring reviews assuming that these reviews will capture the
most critical challenges. Additionally, to avoid personal bias during
the manual analysis, each step in the manual analysis was con-
ducted by two authors, and the results were always cross-validated.
Another potential threat to validity relates to refactoring reviews.
Since refactorings could interleave with other changes [52] (i.e., de-
velopers performed changes together with refactorings), we cannot
claim that the selected refactoring reviews are exclusively about
refactoring. Nevertheless, during our qualitative analysis, we identi-
fied this activity as one of the challenges that contribute to slowing
down the review process.

External Validity.We focus our study on one open-source sys-
tem, due to the low number of systems that satisfied our eligibility
criteria (see Section 3). Therefore, our results may not generalize
to all other open-source systems or to commercially developed
projects. However, the goal of this paper is not to build a theory
that applies to all systems, but rather to show that refactoring can
have an impact on code review process. Another potential threat re-
lates to the proposed taxonomy. Our taxonomy may not generalize
to other open source or commercial projects since the refactoring

review criteria may be different for another set of projects (e.g., out-
side the OpenStack community). Consequently, we cannot claim
that the results of refactoring review criteria (see Figure 3) can
be generalized to other software systems where the need for im-
proving the design might be less important. To mitigate this threat,
we validate the taxonomy with an experienced software developer,
by conducting a follow-up interview to gather further insight and
possible clarification. Yet, performing the validation with only one
developer brings its own bias. The choice of one developer was
driven by their experience with code review. We mitigated the
bias by selecting a developer that does not belong to the software
systems we analyzed. This brings an external opinion that has no
conflict of interests with the current projects.

Conclusion Validity. To compare between two groups of code
review requests, we used appropriate statistical procedures with
p-value and effect size measures to test the significance of the
differences and their magnitude. A statistical test was deployed to
measure the significance of the observed differences between group
values. This test makes no assumption that the data is normally
distributed. Also, it assumes the independence of the groups under
comparison. We cannot verify whether code review requests are
completely independent, as some can be re-opened, or one large
code change can be treated using several requests. To mitigate this,
we verified all the reviews we sampled for the test.

7 CONCLUSION
Understanding the practice of refactoring code review is of para-
mount importance to the research community and industry. Al-
though modern code review is widely adopted in open-source and
industrial projects, the relationship between code review and refac-
toring practice remains largely unexplored. In this study, we per-
formed a quantitative and qualitative study to investigate the review
criteria discussed by developers when reviewing refactorings. Our
results reveal that reviewing refactoring changes take longer to be
completed compared to non-refactoring changes, and developers
rely on a set of criteria to develop a decision about accepting or
rejecting a submitted refactoring change, which makes this process
to be challenging.

For future work, we plan on conducting a structured survey
with software developers from both open-source and industry. The
survey will explore their general and specific review criteria when
performing refactoring activities in code review. This survey will
complement and validate our current study to provide the software
engineering community with a more comprehensive view of refac-
toring practices in the context of modern code review. Another
interesting research direction is to link refactoring-related reviews
to refactoring detection tools such as the Refactoring Miner [87]
or RefDiff [74] to better understand the impact of these reviews on
refactoring types specifically.

REFERENCES
[1] [n. d.]. OpenStack. https://review.opendev.org/640051
[2] Chaima Abid, Vahid Alizadeh, Marouane Kessentini, Thiago do Nascimento Fer-

reira, and Danny Dig. 2020. 30 Years of Software Refactoring Research:A System-
atic Literature Review. arXiv:2007.02194 [cs.SE]

[3] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer, Ali Ouni,
and Marouane Kessentini. 2021. Refactoring Practices in the Context of Mod-
ern Code Review: An Industrial Case Study at Xerox. In 2021 IEEE/ACM 43rd

https://review.opendev.org/640051
https://arxiv.org/abs/2007.02194

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 348–357.

[4] Eman Abdullah AlOmar, Jiaqian Liu, Kenneth Addo, Mohamed Wiem Mkaouer,
Christian Newman, Ali Ouni, and Zhe Yu. 2022. On the documentation of
refactoring types. Automated Software Engineering 29, 1 (2022), 1–40.

[5] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian Newman, and Ali
Ouni. 2021. On preserving the behavior in software refactoring: A systematic
mapping study. Information and Software Technology (2021), 106675.

[6] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Can
refactoring be self-affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In International Workshop on
Refactoring-accepted. IEEE.

[7] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2021. Toward
the automatic classification of self-affirmed refactoring. Journal of Systems and
Software 171 (2021), 110821.

[8] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane
Kessentini. 2019. On the impact of refactoring on the relationship between quality
attributes and design metrics. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 1–11.

[9] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian
Newman, Ali Ouni, and Marouane Kessentini. 2021. How we refactor and how
we document it? On the use of supervised machine learning algorithms to classify
refactoring documentation. Expert Systems with Applications 167 (2021), 114176.

[10] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Chris-
tian D Newman, and Ali Ouni. 2021. Behind the scenes: On the relationship
between developer experience and refactoring. Journal of Software: Evolution
and Process (2021), e2395.

[11] Eman Abdullah AlOmar, Philip T Rodriguez, Jordan Bowman, Tianjia Wang, Ben-
jamin Adepoju, Kevin Lopez, Christian Newman, Ali Ouni, and Mohamed Wiem
Mkaouer. 2020. How Do Developers Refactor Code to Improve Code Reusability?.
In International Conference on Software and Software Reuse. Springer, 261–276.

[12] Eman Abdullah AlOmar, Tianjia Wang, Raut Vaibhavi, MohamedWiemMkaouer,
Christian Newman, and Ali Ouni. 2021. Refactoring for Reuse: An Empirical
Study. Innovations in Systems and Software Engineering (2021), 1–31.

[13] Everton LG Alves, Myoungkyu Song, and Miryung Kim. 2014. RefDistiller: a
refactoring aware code review tool for inspecting manual refactoring edits. In
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
751–754.

[14] Everton LG Alves, Myoungkyu Song, Tiago Massoni, Patrícia DL Machado, and
Miryung Kim. 2017. Refactoring inspection support for manual refactoring edits.
IEEE Transactions on Software Engineering 44, 4 (2017), 365–383.

[15] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In International conference on software engineering.
712–721.

[16] Alberto Bacchelli, Michele Lanza, and Romain Robbes. 2010. Linking e-mails
and source code artifacts. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. 375–384.

[17] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K Lahiri. 2015. Helping
developers help themselves: Automatic decomposition of code review changesets.
In International Conference on Software Engineering-Volume 1. 134–144.

[18] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano
Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When does a refactoring
induce bugs? an empirical study. In IEEE 12th International Working Conference
on Source Code Analysis and Manipulation. 104–113.

[19] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern code reviews in open-source projects: Which problems do they fix?. In Pro-
ceedings of the 11th working conference on mining software repositories. 202–211.

[20] Aline Brito, Andre Hora, and Marco Tulio Valente. 2020. Refactoring Graphs:
Assessing Refactoring over Time. arXiv preprint arXiv:2003.04666 (2020).

[21] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula,
and Katsuro Inoue. 2021. WhoReview: A multi-objective search-based approach
for code reviewers recommendation in modern code review. Applied Soft Com-
puting 100 (2021), 106908.

[22] Kenneth L Clarkson and Peter W Shor. 1989. Applications of random sampling
in computational geometry, II. Discrete & Computational Geometry 4, 5 (1989),
387–421.

[23] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114, 3 (1993), 494.

[24] Flavia Coelho, Tiago Massoni, and Everton LG Alves. 2019. Refactoring-aware
code review: a systematicmapping study. In InternationalWorkshop on Refactoring.
63–66.

[25] Flávia Coelho, Nikolaos Tsantalis, Tiago Massoni, and Everton LG Alves. 2021.
An Empirical Study on Refactoring-Inducing Pull Requests. In Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 1–12.

[26] William Jay Conover. 1998. Practical nonparametric statistics. Vol. 350. John
Wiley & Sons.

[27] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 international symposium on empirical software
engineering and measurement. IEEE, 275–284.

[28] Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. 2020. On the
relationship between refactoring actions and bugs: a differentiated replication.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 556–567.

[29] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N Nguyen. 2007.
Refactoring-aware configuration management for object-oriented programs. In
29th International Conference on Software Engineering (ICSE’07). IEEE, 427–436.

[30] Emre Doğan and Eray Tüzün. 2022. Towards a taxonomy of code review smells.
Information and Software Technology 142 (2022), 106737.

[31] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2021.
An exploratory study on confusion in code reviews. Empirical Software Engineer-
ing 26, 1 (2021), 1–48.

[32] Yuanrui Fan, Xin Xia, David Lo, and Shanping Li. 2018. Early prediction of merged
code changes to prioritize reviewing tasks. Empirical Software Engineering 23, 6
(2018), 3346–3393.

[33] Olivier Gaudin. 2013. Continuous Inspection A Paradigm Shift in Software Quality
Management (3 ed.). 10, Vol. 4. SonarSource.

[34] Xi Ge, Saurabh Sarkar, and Emerson Murphy-Hill. 2014. Towards refactoring-
aware code review. In International Workshop on Cooperative and Human Aspects
of Software Engineering. 99–102.

[35] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson Murphy-Hill. 2017.
Refactoring-aware code review. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 71–79.

[36] Bo Guo and Myoungkyu Song. 2017. Interactively decomposing composite
changes to support code review and regression testing. In Annual Computer
Software and Applications Conference (COMPSAC), Vol. 1. 118–127.

[37] Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel O Cinnéide, and Mo-
hamed Wiem Mkaouer. 2021. An Empirical Study on the Impact of Refactoring
on Quality Metrics in Android Applications. (2021), 28–39.

[38] Oumayma Hamdi, Ali Ouni, Mel Ó Cinnéide, and Mohamed Wiem Mkaouer.
2021. A longitudinal study of the impact of refactoring in android applications.
Information and Software Technology 140 (2021), 106699.

[39] Ahmed E Hassan. 2008. Automated classification of change messages in open
source projects. In Proceedings of the 2008 ACM symposium on Applied computing.
837–841.

[40] Péter Hegedűs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. 2018. Empirical
evaluation of software maintainability based on a manually validated refactoring
dataset. Information and Software Technology 95 (2018), 313–327.

[41] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2012. A large-scale empirical study of
just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2012), 757–773.

[42] Yutaro Kashiwa, Ryoma Nishikawa, Yasutaka Kamei, Masanari Kondo, Emad
Shihab, Ryosuke Sato, and Naoyasu Ubayashi. 2022. An empirical study on
self-admitted technical debt in modern code review. Information and Software
Technology 146 (2022), 106855.

[43] Sunghun Kim, E James Whitehead, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on software engineering 34, 2 (2008),
181–196.

[44] Zarina Kurbatova, Vladimir Kovalenko, Ioana Savu, Bob Brockbernd, Dan An-
dreescu, Matei Anton, Roman Venediktov, Elena Tikhomirova, and Timofey
Bryksin. 2021. RefactorInsight: Enhancing IDE Representation of Changes in Git
with Refactorings Information. arXiv preprint arXiv:2108.11202 (2021).

[45] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and
Jacek Czerwonka. 2017. Code reviewing in the trenches: Challenges and best
practices. IEEE Software 35, 4 (2017), 34–42.

[46] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are refactorings
to blame? an empirical study of refactorings in merge conflicts. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 151–162.

[47] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014.
The impact of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects. In Working Conference on
Mining Software Repositories. 192–201.

[48] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146–2189.

[49] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim
Bechikh, Kalyanmoy Deb, and Ali Ouni. 2015. Many-objective software re-
modularization using NSGA-III. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 3 (2015), 1–45.

[50] Audris Mockus and Lawrence G Votta. 2000. Identifying Reasons for Software
Changes using Historic Databases.. In icsm. 120–130.

Code Review Practices for Refactoring Changes:
An Empirical Study on OpenStack Conference’17, July 2017, Washington, DC, USA

[51] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do code review
practices impact design quality? a case study of the qt, vtk, and itk projects.
In International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 171–180.

[52] EmersonMurphy-Hill, Chris Parnin, and Andrew P Black. 2012. HowWe Refactor,
and How We Know It. IEEE Transactions on Software Engineering 38, 1 (Jan 2012),
5–18. https://doi.org/10.1109/TSE.2011.41

[53] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyanmoy
Deb. 2016. Multi-criteria code refactoring using search-based software engineer-
ing: An industrial case study. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25, 3 (2016), 23.

[54] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. 2016. Search-based peer
reviewers recommendation in modern code review. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 367–377.

[55] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and
Mark Harman. 2019. The impact of code review on architectural changes. IEEE
Transactions on Software Engineering (2019).

[56] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the intents: An in-depth
empirical study on software refactoring in modern code review. In Proceedings of
the 17th International Conference on Mining Software Repositories. 125–136.

[57] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Piantadosi,
Rocco Oliveto, Gabriele Bavota, andMassimiliano Di Penta. 2020. Why developers
refactor source code: A mining-based study. ACM Transactions on Software
Engineering and Methodology (TOSEM) 29, 4 (2020), 1–30.

[58] Luca Pascarella, Franz-Xaver Geiger, Fabio Palomba, Dario Di Nucci, Ivano Mala-
volta, and Alberto Bacchelli. 2018. Self-reported activities of android developers.
In 2018 IEEE/ACM 5th International Conference on Mobile Software Engineering
and Systems (MOBILESoft). IEEE, 144–155.

[59] Luca Pascarella, Davide Spadini, Fabio Palomba, and Alberto Bacchelli. 2019.
On The Effect Of Code Review On Code Smells. CoRR abs/1912.10098 (2019).
arXiv:1912.10098 http://arxiv.org/abs/1912.10098

[60] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information needs in contemporary code review. Proceedings of
the ACM on Human-Computer Interaction 2, CSCW (2018), 135.

[61] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and Chris-
tian Donald Newman. 2019. Contextualizing rename decisions using refactorings
and commit messages. In 2019 19th International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 74–85.

[62] Anthony Peruma, Christian D Newman, Mohamed Wiem Mkaouer, Ali Ouni,
and Fabio Palomba. 2020. An exploratory study on the refactoring of unit test
files in android applications. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops. 350–357.

[63] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D New-
man, Mohamed Wiem Mkaouer, and Ali Ouni. 2022. How do i refactor this? An
empirical study on refactoring trends and topics in Stack Overflow. Empirical
Software Engineering 27, 1 (2022), 1–43.

[64] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. 2008. On the Relation of
Refactorings and Software Defect Prediction. In Proceedings of the 2008 Interna-
tional Working Conference on Mining Software Repositories (Leipzig, Germany)
(MSR ’08). ACM, New York, NY, USA, 35–38. https://doi.org/10.1145/1370750.
1370759

[65] Self-Affirmed Refactoring. 2022. ReplicationPackage. https://smilevo.github.io/
self-affirmed-refactoring/refactoring-review/

[66] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 202–212.

[67] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Confer-
ence on Software Engineering (ICSE). IEEE, 541–550.

[68] Jeanine Romano, J Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006. Appropri-
ate statistics for ordinal level data. In Proceedings of the Annual Meeting of the
Florida Association of Institutional Research. 1–3.

[69] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14, 2
(2009), 131–164.

[70] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In International
Conference on Software Engineering: Software Engineering in Practice. 181–190.

[71] Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. 2009. Studying the use
of developer IRC meetings in open source projects. In 2009 IEEE International
Conference on Software Maintenance. IEEE, 147–156.

[72] Danilo Silva, João Silva, Gustavo Jansen De Souza Santos, Ricardo Terra, and
Marco Tulio O Valente. 2020. RefDiff 2.0: A Multi-language Refactoring Detection
Tool. IEEE Transactions on Software Engineering (2020).

[73] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We
Refactor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 858–870. https:
//doi.org/10.1145/2950290.2950305

[74] Danilo Silva and Marco Tulio Valente. 2017. Refdiff: detecting refactorings in
version histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 269–279.

[75] Gustavo Soares, Diego Cavalcanti, Rohit Gheyi, Tiago Massoni, Dalton Serey,
and Márcio Cornélio. 2009. Saferefactor-tool for checking refactoring safety. (01
2009).

[76] Konstantinos Stroggylos and Diomidis Spinellis. 2007. Refactoring–Does It
Improve Software Quality?. In Fifth International Workshop on Software Quality
(WoSQ’07: ICSE Workshops 2007). IEEE, 10–10.

[77] Gábor Szóke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy.
2014. Bulk fixing coding issues and its effects on software quality: Is it worth
refactoring?. In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation. IEEE, 95–104.

[78] Dirk Taeger and Sonja Kuhnt. 2014. Statistical hypothesis testing with SAS and R.
John Wiley & Sons.

[79] Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani Stew-
art, and Anita Raja. 2021. An Empirical Study of Refactorings and Technical Debt
in Machine Learning Systems. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 238–250.

[80] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How do software engineers understand code changes?: an exploratory study in
industry. In ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. 51.

[81] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to
facilitate code review. In Working Conference on Mining Software Repositories.
180–190.

[82] Patanamon Thongtanunam and Ahmed E Hassan. 2020. Review dynamics and
their impact on software quality. IEEE Transactions on Software Engineering
(2020).

[83] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.
2015. Investigating code review practices in defective files: An empirical study
of the qt system. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, 168–179.

[84] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.
2016. Revisiting code ownership and its relationship with software quality in the
scope of modern code review. In Proceedings of the 38th international conference
on software engineering. 1039–1050.

[85] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should
review my code? a file location-based code-reviewer recommendation approach
for modern code review. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 141–150.

[86] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2008.
JDeodorant: Identification and removal of type-checking bad smells. In 2008 12th
European Conference on Software Maintenance and Reengineering. IEEE, 329–331.

[87] Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 483–494.

[88] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wesley KG
Assunçao, Silvia Regina Vergilio, Juliana Alves Pereira, Anderson Oliveira, and
Alessandro Garcia. 2021. Predicting Design Impactful Changes in Modern Code
Review: A Large-Scale Empirical Study. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 471–482.

[89] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenílio, Rafael Lima,
Alessandro Garcia, and Carla Bezerra. 2020. How does modern code review
impact software design degradation? an in-depth empirical study. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
511–522.

[90] Clark Wissler. 1905. The Spearman correlation formula. Science 22, 558 (1905),
309–311.

[91] Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Iida. 2016. Mining
the modern code review repositories: A dataset of people, process and product.
In Proceedings of the 13th International Conference on Mining Software Repositories.
460–463.

[92] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. 2015. Interac-
tive code review for systematic changes. In International Conference on Software
Engineering-Volume 1. 111–122.

[93] Xin Zhang, Yang Chen, Yongfeng Gu, Weiqin Zou, Xiaoyuan Xie, Xiangyang Jia,
and Jifeng Xuan. 2018. How do multiple pull requests change the same code: A
study of competing pull requests in github. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 228–239.

https://doi.org/10.1109/TSE.2011.41
https://arxiv.org/abs/1912.10098
http://arxiv.org/abs/1912.10098
https://doi.org/10.1145/1370750.1370759
https://doi.org/10.1145/1370750.1370759
https://smilevo.github.io/self-affirmed-refactoring/refactoring-review/
https://smilevo.github.io/self-affirmed-refactoring/refactoring-review/
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2950290.2950305

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Data Collection
	3.2 Data Preparation
	3.3 Data Analysis

	4 Results and Discussion
	4.1 How do refactoring reviews compare to non-refactoring reviews in terms of code review efforts?
	4.2 What challenges do developers face when reviewing refactoring tasks?

	5 Implications
	5.1 Implications for Practitioners
	5.2 Implications for Researchers
	5.3 Implications for Tool Builders

	6 Threats To Validity
	7 Conclusion
	References

